a2 United States Patent

US009411855B2

(10) Patent No.: US 9,411,855 B2

Kemp et al. 45) Date of Patent: Aug. 9, 2016
(54) TRIGGERING ACTIONS IN AN (56) References Cited
INFORMATION FEED SYSTEM
U.S. PATENT DOCUMENTS
(75) Inventors: Christopher A. Kemp, Toronto (CA); 5577188 A 11/1996 Zhu
Carter Thaxton, Portland, OR (US); 5,608,872 A 3/1997 Schwartz et al.
Christopher De Gour, San Jose, CA 5,649,104 A 7/1997 Carleton et al.
(US); Kevin Schraith, Orinda, CA (US); 5715450 A~ 2/1998 Ambrose et al.
. 5,761,419 A 6/1998 Schwartz et al.
Andrew Sopko, San Francisco, CA)
(US); Nathan Wisman, San Francisco, (Continued)
CAUS) FOREIGN PATENT DOCUMENTS
(73) Assignee: salesforce.com, inc., San Francisco, CA WO WO 2008/148130 122008
(US) WO WO 2011/060306 52011
(*) Notice: Subject. to any disclaimer,. the term of this OTHEIchOIIJl]tBHIIjIleC(zlA)xTIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 389 days. U.S. Appl. No. 13/174,296, filed Jun. 30, 2011, Hubbard et al.
(Continued)
(21) Appl. No.: 13/162,273
Primary Examiner — Shyue Jiunn Hwa
(22) Filed: Jun. 16, 2011 (74) Attorney, Agent, or Firm — Weaver Austin Villen-
euve & Sampson LLP
(65) Prior Publication Data (57) ABSTRACT
US 2012/0102063 Al Apr. 26, 2012 Disclosed are systems, apparatus, methods, and computer
readable media for performing actions in response to infor-
mation updates provided in an information feed. In one
Related U.S. Application Data implementation, an information update is selected for com-
parison with a data record creation rule. The data record
(60) Provisional application No. 61/474,546, filed on Apr. creation rule may specity a data record creation operation for
12, 2011, provisional application No. 61/406,524, creating a data record based the selected information update.
filed on Oct. 25, 2010, provisional application No. The selected information update may be capable of being
61/416,204, filed on Nov. 22, 2010. displayed in an information feed. A determination may be
made as to whether the selected information update includes
(51) Int.ClL information satisfying a trigger condition associated with the
GOG6F 17/30 (2006.01) data record creation rule. When the information in the
(52) US.CL selected information update satisfies the trigger condition, the
CPC e GOG6F 17/3051 (2013.01) datarecord creation operation may be performed to create the
(58) Field of Classification Search data record. The data record creation operation may identify
USPC oo 707/702, 769~ information to include in the data record.

See application file for complete search history.

20 Claims, 44 Drawing Sheets

Usar

12

Bysten ER

Lisar
"""" System

i

US 9,411,855 B2

Page 2
(56) References Cited 7,130,807 Bl * 10/2006 Mikurak G06Q 10/06
705/7.25
U.S. PATENT DOCUMENTS 7,181,758 Bl 2/2007 Chan
7,269,590 B2 9/2007 Hull et al.

5,819,038 A 10/1998 Carleton et al. 7,289,976 B2 10/2007 Kihneman et al.
5,821,937 A 10/1998 Tonelli et al. 7,356,482 B2 4/2008 Frankland et al.
5.831.610 A 11/1998 Tonelli et al. 7,373,599 B2 5/2008 McElfresh et al.
5852715 A 12/1998 Raz et al. 7398,223 B2 7/2008 Kahlert et al.
5.873.096 A 2/1999 Limetal. 7,401,094 Bl 7/2008 Kesler
5,918,159 A 6/1999 Fomukong et al. 7,406,501 B2 7/2008 Sz_eto etal.
5,963,953 A 10/1999 Cram et al. 7,412,455 B2 8/2008 Dillon
5983227 A 11/1999 Nazem et al. 7421444 Bl 9/2008 Owen, Ir.
6,092,083 A 7/2000 Brodersen et al. 7,454,509 B2 11/2008 Boulter et al.
6,161,149 A 12/2000 Achacoso et al. 7,508,789 B2 3/2009 Chan
6,169,534 Bl 1/2001 Raffel et al. 7,552,063 Bl 6/2009 McEachern
6,178,425 Bl 1/2001 Brodersen et al. 7,574,429 Bl 82009 Zaifman
6.189.011 Bl 2/2001 Lim et al. 7,599,935 B2 10/2009 La Rotonda et al.
6.189.016 Bl 2/2001 Cabrera et al. 7,603,331 B2 10/2009 Tuzhilin et al.
6:216:133 Bl 4/2001 Masthoff 7,603,483 B2 10/2009 Psounis et al.
6,216,135 Bl 4/2001 Brodersen et al. 7,620,655 B2 11/2009 Larsson et al.
6,233,617 Bl 5/2001 Rothwein et al. 7,644,122 B2 1/2010 Weyer et al.
6,236,978 Bl 5/2001 Tuzhilin 7,668,861 B2 2/2010 Steven
6,240,429 Bl 5/2001 Thornton et al. 7,698,160 B2 4/2010 Beaven et al.
6,266,669 Bl 7/2001 Brodersen et al. 7,730,478 B2 6/2010 Weissman
6,288,717 Bl 9/2001 Dunkle 7,747,648 Bl 6/2010 Kraft et al.
6,295,530 Bl 9/2001 Ritchie et al. 7,779,039 B2 8/2010 Weissman et al.
6,324,568 Bl 11/2001 Diec et al. 7,779,416 B2 82010 Kogaetal.
6,324,693 Bl 11/2001 Brodersen et al. 7,779,475 B2 8/2010 Jakobson et al.
6,336,137 Bl 1/2002 Lee et al. 7,827,208 B2 11/2010 Bosworth et al.
D454,139 S 3/2002 Feldcamp et al. 7,851,004 B2 12/2010 Hirao et al.
6,367,077 Bl 4/2002 Brodersen et al. 7,853,881 Bl 12/2010 Assal et al.
6,393,605 Bl 5/2002 Loomans 7,945,653 B2 5/2011 Zuckerberg et al.
6,405,220 Bl 6/2002 Brodersen et al. 7,984,056 Bl 7/2011 Kane
6,411,949 Bl 6/2002 Schaffer 8,005,896 B2 82011 Cheah
6,434,550 Bl 8/2002 Warner et al. 8,014,943 B2 9/2011 Jakobson
6,446,089 Bl 9/2002 Brodersen et al. 8,015,495 B2 9/2011 Achacoso et al.
6.535.909 Bl 3/2003 Rust 8,032,297 B2 10/2011 Jakobson
6.549.008 Bl 4/2003 Loomans 8,060,634 Bl 11/2011 Darnell et al.
6,553:563 B2 4/2003 Ambrose et al. 8,073,850 Bl 12/2011 Hubbard et al.
6,560,461 Bl 5/2003 Fomukong et al. 8,082,301 B2 122011 Ahlgren et al.
6,564,207 Bl 5/2003 Abdoh 8,095,413 Bl 1/2012 Beaven
6,574,635 B2 6/2003 Stauber et al. 8,095,531 B2 1/2012 Weissman et al.
6,577,726 Bl 6/2003 Huang et al. 8,095,594 B2 1/2012 Beaven et al.
6,601,087 Bl 7/2003 Zhu et al. 8,103,611 B2 1/2012 Tuzhilin et al.
6,604,117 B2 8/2003 Lim et al. 8,150,913 B2 4/2012 Cheah
6,604,128 B2 8/2003 Diec et al. 8,209,308 B2 6/2012 Rueben et al.
6,609,150 B2 8/2003 TLee et al. 8,209,333 B2 6/2012 Hubbard et al.
6,621,834 Bl 9/2003 Scherpbier et al. 8,275,836 B2 9/2012 Beaven et al.
6,654,032 B1 11/2003 Zhu et al. 8,457,545 B2 6/2013 Chan
6,665,648 B2 12/2003 Brodersen et al. 8,484,111 B2 72013 Frankland etal.
6,665,655 Bl 12/2003 Warner et al. 8,490,025 B2 7/2013 Jakobson et al.
6,684,438 B2 2/2004 Brodersen et al. 8,504,945 B2 8/2013 Jakobson et al.
6,711,565 Bl 3/2004 Subramaniam et al. 8,510,045 B2 8/2013 Rueben et al.
6,724,399 Bl 4/2004 Katchour et al. 8,510,664 B2 8/2013 Rueben et al.
6,728,702 Bl 4/2004 Subramaniam et al. 8,539,359 B2 9/2013 Rapaport et al.
6,728,960 Bl 4/2004 T.oomans et al. 8,566,301 B2 10/2013 Rueben et al.
6,732,095 Bl 5/2004 Warshavsky et al. 8,646,103 B2 2/2014 Jakpbson et al.
6,732,100 B1 5/2004 Brodersen et al. 8,655,938 Bl 2/2014 Smith et al.
6,732,111 B2 5/2004 Brodersen et al. 8,886,766 B2 11/2014 Dumn et al.
6.754.681 B2 6/2004 Brodersen et al. 2001/0044791 Al 11/2001 Richter et al.
6’763’351 Bl 7/2004 Subramaniam et al. 2002/0072951 Al 6/2002 Lee et al.
6’763’501 Bl 7/2004 Zhu et al. 2002/0082892 Al 6/2002 Raffel
6:768’904 B2 7/2004 Kim 2002/0129352 Al 9/2002 Brodersen et al.
6 772’229 Bl 8/2004 Achacoso et al. 2002/0140731 Al 10/2002 Subramaniam et al.
6’782’383 B2 8/2004 Subramaniam et al. 2002/0143997 Al 10/2002 Huang et al.
6’804,330 Bl 10/2004 Jones et al. 2002/0162090 Al 10/2002 Parnell et al.
6:826:565 B2 11/2004 Ritchie et al. 2002/0165742 A1 11/2002 Robbins
6,826,582 Bl 11/2004 Chatterjee et al. 2002/0188777 A1 12/2002 Kraft et al.
6,826,745 B2 11/2004 Coker 2003/0004971 Al 1/2003 Gong
6,829,655 Bl 12/2004 Huang et al. 2003/0018705 Al 1/2003 Chen et al.
6,842,748 Bl 1/2005 Warner et al. 2003/0018830 Al 1/2003 Chen et al.
6,850,895 B2 2/2005 Brodersen et al. 2003/0046140 Al 3/2003 Callahan et al.
6,850,949 B2 2/2005 Warner et al. 2003/0066031 Al 4/2003 Laane et al.
6,907,566 Bl 6/2005 McElfresh et al. 2003/0066032 Al 4/2003 Ramachandran et al.
7,013,325 B1 3/2006 Vivian et al. 2003/0069936 Al 4/2003 Warner et al.
7,062,502 B1 6/2006 Kesler 2003/0070000 Al 4/2003 Coker et al.
7,069,231 Bl 6/2006 Cinarkaya et al. 2003/0070004 Al 4/2003 Mukundan et al.
7,069,497 Bl 6/2006 Desai 2003/0070005 Al 4/2003 Mukundan et al.
7,100,111 B2 8/2006 McElfresh et al. 2003/0074418 Al 4/2003 Coker et al.

US 9,411,855 B2

Page 3
(56) References Cited 2010/0287256 Al 11/2010 Neilio
2010/0325107 Al 12/2010 Kenton et al.
U.S. PATENT DOCUMENTS 2011/0066710 Al 3/2011 Paul
2011/0113057 Al 5/2011 Leeetal.

2003/0120675 Al 6/2003 Stauber et al. 2011/0113058 Al 5/2011 Leeetal.
2003/0151633 Al 8/2003 George et al. 2011/0113059 Al 52011 Lee et al.
2003/0159136 Al 8/2003 Huang et al. 2011/0113071 Al 5/2011 Leeetal.
2003/0187921 Al 10/2003 Diec et al. 2011/0113072 AL 52011 Lee et al.
2003/0189600 Al 10/2003 Gune et al. 2011/0137940 Al 6/2011 Gradin et al.
2003/0204427 Al 10/2003 Gune et al. 2011/0153712 Al 6/2011 Whetsel GOGF 17/30569
2003/0206192 Al 11/2003 Chen et al. 709/201
2003/0225730 A1 12/2003 Warner et al. 2011/0161444 Al 6/2011 Chauhan
2004/0001092 Al 1/2004 Rothwein et al. 2011/0218958 Al 9/2011 Warshavsky et al.
2004/0010489 Al 1/2004 Rio et al. 2011/0238495 Al 9/2011 Kang
2004/0015981 Al 1/2004 Coker et al. 2011/0247051 Al 10/2011 Bulumulla et al.
2004/0027388 Al 2/2004 Berg et al. 2011/0271175 Al 112011 Lavietal.
2004/0128001 Al 7/2004 Levin et al. 2011/0289097 Al 112011 Fischer et al.
2004/0186860 Al 9/2004 Lee et al. 2011/0289161 Al* 112011 Rankin, Jr. GO06Q 10/107
2004/0193510 Al 9/2004 Catahan et al.] 709/206
2004/0199489 Al 10/2004 Barnes-Leon et al. 2011/0302221 Al 12/2011 Tobin et al.
2004/0199536 A1 10/2004 Barnes Leon et al. 2011/0307695 Al 12/2011 Slater et al.
2004/0199543 Al 10/2004 Braud et al. 2011/0314029 Al 12/2011 Fischer et al.
2004/0205540 A1 10/2004 Vulpe et al. 2011/0320423 Al* 12/2011 Gemmell GO6F 17/30867
2004/0226002 Al 11/2004 Larcheveque et al. . 707/706
2004/0249854 Al 12/2004 Barnes-Leon et al. 2012/0042218 Al 2/2012 Cinarkaya et al.
2004/0260534 Al 12/2004 Pak et al. 2012/0059795 Al 3/2012 Hersh et al.
2004/0260659 Al 12/2004 Chan et al. 2012/0078917 Al 3/2012 Gradin et al.
2004/0268299 Al 12/2004 I.ei etal. 2012/0078981 Al 3/2012 Gradin et al.
2005/0004978 A1* 1/2005 Reed ..oocooovvvvnne, G06Q 30/0601 2012/0079004 Al 3/2012 Herman

709/203 2012/0079038 Al 3/2012 Hersh
2005/0050555 Al 3/2005 Exley et al. 2012/0086544 Al 4/2012 Kemp
2005/0091098 Al 4/2005 Brodersen et al. 2012/0089610 Al 4/2012 Agrawal et al.
2005/0267907 Al 12/2005 Pope et al. 2012/0096046 Al 4/2012 Kucera
2006/0200443 Al* 9/2006 Kahn ... GOGF 17/3089 2012/0101985 Al 4/2012 Kemp et al.
2006/0235715 Al 10/2006 Abrams et al. 2012/0102114 A1 4/2012 Dunn et al.
2006/0235831 Al 10/2006 Adinolfi et al. 2012/0102153 Al 4/2012 Kemp et al.
2007/0005339 Al 1/2007 Jaquinta 2012/0102402 Al 4/2012 Kwong
2007/0038641 Al 2/2007 Fawcett et al. 2012/0102420 Al 4/2012 Fukahori
2007/0043766 A1* 2/2007 Nicholas HO4L 67/02 2012/0143817 Al 6/2012 Prabaker et al.
2007/0061487 Al 3/2007 Moore et al. 2012/0143917 Al 6/2012 Prabaker et al.
2007/0073787 AL* 3/2007 Tysowski GOGF 17/30581 2012/0223951 Al 9/2012 Dunn et al.
2007/0083536 Al 4/2007 Darnell et al. 2012/0233137 Al 9/2012 Jakobson et al.
2007/0106536 Al 5/2007 Moore 2012/0290407 Al 11/2012 Hubbard et al.
2007/0174429 Al 7/2007 Mazzaferri et al. 2012/0316962 Al 12/2012 Rathod
2007/0214097 Al 9/2007 Parsons et al. 2012/0317203 Al 12/2012 Hostetler
2007/0226037 Al 9/2007 Garg et al. 2013/0212497 Al 8/2013 Zelenko et al.
2008/0040474 Al 2/2008 Zuckerberg et al. 2013/0218948 Al 8/2013 Jakobson
2008/0040673 Al 2/2008 Zuckerberg et al. 2013/0218949 Al 82013 Jakobson
2008/0082540 Al 4/2008 Weissman et al. 2013/0218966 Al 82013 Jakobson
2008/0168135 Al* 7/2008 Redlichccccoo....... G06Q 10/10 2013/0247216 Al 972013 Cinarkaya et al.

709/204 2014/0359537 Al 12/2014 Jackobson et al.
2008/0244091 Al 10/2008 Moore et al. 2015/0006289 Al 1/2015 Jakobson et al.
2008/0249972 Al 10/2008 Dillon 2015/0007050 Al 1/2015 Jakobson et al.
2008/0263169 Al 10/2008 Brabec et al. 2015/0026600 Al 1/2015 Dunn et al.
2008/0281610 Al 11/2008 Yoshida et al. 2015/0095162 Al 4/2015 Jakobson et al.
2008/0301175 Al 12/2008 Applebaum et al. 2015/0142596 Al 5/2015 Jakobson et al.
2009/0063415 Al 3/2009 Chatfield et al. 2015/0172563 Al 6/2015 Jakobson et al.
2009/0100342 Al 4/2009 Jakobson
2009/0157658 AL* 6/2009 BONEVccooov........ G06Q 30/00 FOREIGN PATENT DOCUMENTS
2009/0177484 Al 7/2009 Davis et al.
2009/0177744 Al 7/2009 Marlow et al. WO WO 2012/048092 4/2012
2009/0222527 Al 9/2009 Arconati et al. WO WO 2012/054309 4/2012
2009/0222750 Al 9/2009 Jain et al.
2009/0249290 Al 10/2009 Jenkins et al. OTHER PUBLICATIONS
2009/0259628 Al 10/2009 Farrell et al.
2009/0271287 Al 10/2009 Halpern U.S. Appl. No. 13/280,086, filed Oct. 24, 2011, Dunn.
2009/0282045 Al 11/2009 Hsieh et al. U.S. Appl. No. 13/362,941, filed Jan. 31, 2012, Olsen.
200910092773 AL 1172009 Leedberg et al. U.S. Appl. No. 13/363,007, filed Jan. 31, 2012, Dunn et al.
2010/0049852 Al 3/2010 Whitnah et al. U.S. Appl. No. 13/363,081, filed Jan. 31, 2012, Dunn et al.
2010/0082431 Al 4/2010 Ramer et al. U.S. Appl. No. 13/439,755, filed Apr. 4, 2012, Beechuk et al.
2010/0107164 Al 4/2010 Koskimies et al. U.S. Appl. No. 13/440,479, filed Apr. 5, 2012, Olsen et al.
2010/0107165 Al 4/2010 Koskimies et al. U.S. Appl. No. 13/446,855, filed Apr. 13,2012, Dunn.
2010/0132049 Al 5/2010 Vernal et al. U.S. Appl. No. 13/447,643, filed Apr. 16, 2012, Thaxton et al.
2010/0145939 Al 6/2010 Kumar et al. U.S. Appl. No. 13/447,645, filed Apr. 16, 2012, Hanson et al.
2010/0153377 Al 6/2010 Rajan et al. U.S. Appl. No. 13/455,999, filed Apr. 25, 2012, Bedi.
2010/0161707 Al 6/2010 Henderson U.S. Appl. No. 13/478,002, filed May 22, 2012, Hubbard et al.
2010/0198649 Al 8/2010 Appleyard et al. U.S. Appl. No. 13/489,882, filed Jun. 6, 2012, Verma et al.
2010/0205541 Al 8/2010 Rapaport et al. U.S. Appl. No. 13/540,363, filed Jul. 2, 2012, Dunn et al.

US 9,411,855 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

U.S. Appl. No. 13/540,367, filed Jul. 2, 2012, Micucci et al.

U.S. Appl. No. 13/540,375, filed Jul. 2, 2012, Micucci et al.

U.S. Appl. No. 13/585,556, filed Aug. 14, 2012, Mencke.

U.S. Appl. No. 13/586,202, filed Aug. 15, 2012, Dunn et al.

U.S. Appl. No. 13/589,335, filed Aug. 20, 2012, Wong et al.

U.S. Appl. No. 13/603,910, filed Sep. 5, 2012, Schneider.

U.S. Office Action dated Mar. 16, 2012 issued in U.S. Appl. No.
13/025,069.

U.S. Office Action dated Jun. 28, 2012 issued in U.S. Appl. No.
13/025,076.

U.S. Office Action dated Jun. 7, 2012 issued in U.S. Appl. No.
13/162,276.

U.S. Office Action dated Mar. 15, 2012 issued in U.S. Appl. No.
12/945,410.

U.S. Final Office Action dated Jul. 30, 2012 issued in U.S. Appl. No.
12/945,410.

U.S. Office Action dated Mar. 30, 2012 issued in U.S. Appl. No.
12/945,417.

U.S. Office Action dated Mar. 28, 2012 issued in U.S. Appl. No.
12/945,577.

U.S. Office Action dated Jun. 29, 2012 issued in U.S. Appl. No.
12/945,656.

U.S. Office Action dated Sep. 18, 2012 issued in U.S. Appl. No.
12/917,326.

U.S. Office Action dated Sep. 7, 2012 issued in U.S. Appl. No.
13/154,324.

PCT International Search Report and Written Opinion dated Feb. 27,
2012 issued in PCT/US2011/055071.

PCT International Search Report and Written Opinion dated Mar. 8,
3012 issued in PCT/US2011/056207.

PCT International Search Report dated Nov. 17, 2011 issued in
PCT/US2010/056596.

PCT International Preliminary Report on Patentability and Written
Opinion dated May 24, 2012 issued in PCT/US2010/056596.
“Google Plus Users”, Google+Ripples, Oct. 31, 2011 [retrieved on
Feb. 21, 2012 from Internet at http://www.googleplusers.com/
google-ripples.html], 3 pages.

U.S. Office Action dated Mar. 15, 2013 issued in U.S. Appl. No.
13/162,270.

U.S. Office Action dated Jan. 31, 2013 issued in U.S. Appl. No.
13/162,276.

U.S. Final Office Action dated Nov. 6, 2013 issued in U.S. Appl. No.
13/162,270.

U.S. Office Action dated Nov. 29, 2013 issued in U.S. Appl. No.
13/309,435.

U.S. Final Office Action dated Mar. 13,2014 issued in U.S. Appl. No.
13/162,276.

U.S. Office Action dated Oct. 14, 2014 issued in U.S. Appl. No.
13/162,270.

U.S. Final Office Action dated May 21, 2015 issued in U.S. Appl. No.
13/162,270.

U.S. Notice of Allowance dated Apr. 14, 2014 issued in U.S. Appl.
No. 13/309,435.

U.S. Notice of Allowance dated Jul. 2, 2014 issued in U.S. Appl. No.
13/309,435.

U.S. Final Office Action dated Apr. 17,2014 issued in U.S. Appl. No.
13/162,273.

U.S. Office Action dated Feb. 12, 2015 issued in U.S. Appl. No.
13/162,273.

* cited by examiner

U.S. Patent

Aug. 9,2016

Sheet 1 of 44

US 9,411,855 B2

‘*“:'M.u.u.um‘f”"
{ Tanant
i Data

iStomge

e

i Frovessor
Byslam

?;’:&;‘@gi’}:&m
e

{w“ 28

PFrocess Bpace

>

Mabwork

Interface

\,\

v

Liser
Systam

12

Ww"“"*
M

Matwork

FiG. 1A

Environment

ig

“»..M,,%

e

Usar
Gystem

e

U.S. Patent Aug. 9,2016 Sheet 2 of 44 US 9,411,855 B2

o B2
e " ¥ B "
"'-:v.mm:) _W”mﬁ e 23
. F 3 S ,.3
[Tenant Space b 11
Tenant Data S A R
Apphcation MetaData 7T 118
S Tenant OB e
“M\”‘M\m‘m nie e 'WMMMM
Agphoation
Setup Tanard Management Jystem
Mochaniyy 38 Provess Frovess G
" 116 102
Seress 138 102
Routines 38 ~ o ; -
Tenant 1§ Tenant @ Tarsary M
PLISOGL Process | Process |77 | Process
24 ¥ -
BEE et
1R . 14 - 28
AP 32 B iINY
o w0
- e
g - e -
e, - N e = Rl
gy, e 100 Appl, bWy

""""""" Server

P
TR JE s e B "‘,f _,.M’l’ -
Ervvironment “ e
163 L

12
Frooassor rsmony [3"::3
Exvsborny 124

Onatput i IR

System 120

gt ;
Svgtons 120

18

U.S. Patent Aug. 9,2016 Sheet 3 of 44 US 9,411,855 B2

O e
~218 Ko %,
] Swdiph ¥

FiG. 24

Doviend

P
SEEN

RO

frachaznnn

R kR

£
5y
&

U.S. Patent Aug. 9,2016 Sheet 4 of 44 US 9,411,855 B2

o 3L

3 e b Diatabase svstem receives a
reguest o update s firsl record

.l

20) Dotobase systom wriles new
dada o sl record

JBG e,) _A
) Genprate feerd update

340 o . l _ "
g Add feed update o feed of first
record

l

ientify followers of Tirgd recurd

350

&

Agdd the feed update o 8 nows feed of

sach fnllowsr

¥
30 e | Followsr scossses hisfher nows feed
andd sees the updsale

FiG. 3

US 9,411,855 B2

Sheet 5 of 44

Aug. 9,2016

U.S. Patent

ww
6 pagy
3 senbay

gy
Liamopni)

%4
UBIRAL
BEBGEIE

& o

¥
aspgeieg
£ it

asBaRIE
Ol

i
memin
pat] MBn

g
sepn

Lip
DM

7
BIBD MEN

4% 4

¥ Bid

i HEn i

¥ PHO0EN

st

0} gy

U.S. Patent Aug. 9,2016 Sheet 6 of 44 US 9,411,855 B2

500

Database system identifies an
1 aotion of a first user that triggers
g averd

S T Q—

8 7

BID e 088 the event qualify for a
fead update?

» Siop

Generate feed update about the
Aaction

FT) e Sotitd e update 1o feed of first
usar

e 24 $if s Fedlovarmr e ooF T it gt
e I fdentify followers of firsl usey

Addd the feed updats 1o 2 nows

foad of sach followesy

B e Pollorwer accesses the nows
foad and seas the feed updale

FiG. &

U.S. Patent Aug. 9,2016 Sheet 7 of 44 US 9,411,855 B2

810] Daotabase system recelves a
ressage associated with & user

k4

BE0 -} Add message o a pofile {eg.
ag & profife feed) of the user

¥

830 - . . e
T Database systam identifies

fodlowers of user

¥

B840 . 1 Add the message (o 8 news feed
of sach follower

ki d

: f'-.:,‘ oy e 33 ‘o . . 4
6 ey Follwer Seresses 8 news feed
and sess the message

i

860 e Database system receives g
comment about the messags

-
870~} Add comment to the news feed
of each follower

Fit. 8

US 9,411,855 B2

Sheet 8 of 44

Aug. 9, 2016

U.S. Patent

S s

Bragasnmd

US 9,411,855 B2

Sheet 9 of 44

Aug. 9,2016

U.S. Patent

e

NG

A GRIAE B

ABRgsROr URRRe EREEO

RSk

CERNLGTE L

SR

sy 1 ey

3

§} A PR

DT §E

0

QG S

U.S. Patent Aug. 9, 2016

Created by
Hya13

Evert
D9t

(ibipot
Wy 8142

Sheet 10 of 44

Evant
3 431

Cromvanent

59
X

US 9,411,855 B2

Tirrsed

£ 0615 LS

37

1]

FEER R Rk 1
537 Pa

& 485 01 B3 G-17-20104

Event History Tabde 810

Event Ol valug Plaw

Ewvarg
i a5

Fomt Text
R

Comment Table 830

Firrnf
Diate 853

Y a2t 822 vl B3
E37 it £

EGY

TOTHETE
4:12 Phd

AL

Be12-2010

E37 423 .3
o Fleld Change Table

H20

et

bl {3
51 i ag

gl

Lste {88

L7 oG

User Subsoription
Tadyie 9480

*®

Post Tabile 950

Llmer
iy 881 §

Event

2082

LB

B3

Us 1y

£80

LIS

BE37

FIG, BA

Maows Faard Tabla

260

U.S. Patent

902

i
o,
g

Aug. 9, 2016 Sheet 11 of 44

Recsive One o morg proparties of
an obiedt storad in the dalabase
system

Hacpive o or morg oriferia aboud
which users are o automatically
follow the object

¥

Dieturmineg whethsy the ong or
more propertiies of the object
aatisfy the one or more oriferia for
& first user

¥

Hthe oriteria are satishisd, the
object s associated with the first
usEar

G, 98

US 9,411,855 B2

e G0

U.S. Patent Aug. 9,2016 Sheet 12 of 44 US 9,411,855 B2

1010) Roooive dats nlioative of an
ey

&

Dietennine whether the svent ia

baing racked for inclusion into
fend tabley

o

TRE0

o

G Write avend 1o an event history

tabibe

- 1050
1040 . ¥ * v
>, Lipiate fleld Lindate post

changs table fabie

A . . .
HHGE i Haceive a comment for an event
angd add o 8 comment able

Fig, 10

U.S. Patent

TE3 -,

Aug. 9, 2016 Sheet 13 of 44

Recebve a query for an evants
history talde

&

Check o determing i the usey
ean view the record fead

¥

Lheck fisld level seourity table o

determine whether the user can

See partiouisy felds

H
H
%

Display feed Hems 1o which the
fiser NAn Go0ess

FiG. 11

US 9,411,855 B2

U.S. Patent Aug. 9,2016 Sheet 14 of 44 US 9,411,855 B2

1216 Fovalve g query roen o seoond
EEEOTTTN gmer for an svenis bistory able g 100
o ses a frst user's profile feed

w
Parform seourity oheack whether
LR Its s .
PZE0 w0 gpeonmd user oan soo Bt usar's
profile fesd

-
Peorform a securily
1230 o chack on specific feed
Heums

L Hatrieve a predelermined
1231 i number of matehing entries from
the avend history labls

k-
1930 Organics the record genifiers by ype and
VT cheok whnther the sacongd can see the

racord ypas

k.

123% i I canosee bype, then pronesd io cheek
3. e P
ancess for specific records

IDEE e W58 Tald sharing rules 1o detaemming i
oeriain Selds are not viewabls

w
T35 . Repsal stops 12311834 unid a
stopping oriteris is reached

FIG. 12

U.S. Patent

tl T —

1320 i Dstermine oblects

1330 o,
Y

134

TI0 e, Recsive a regquest for a

Aug. 9, 2016 Sheet 15 of 44

Heoeive dats indicathve of an
et

kA

ansociated with the svend

|

Detarmine users following the
avar

Wiite followers of the event along
withy gy everd identifisay 1D 8 news
foed abis

news fead from & user

Accass naws feed lable and othar
tables to genersde feed Herms for
chinpday

US 9,411,855 B2

F Y300

U.S. Patent Aug. 9,2016 Sheet 16 of 44 US 9,411,855 B2

F

1410~ Receive ong or morg oriteria
spaoifying which feed lems are to be
displaved {0 o first user

1420 —p identify feed Hems of one or more
setoctad objscls hat mateh the oriteria

. | Display the feed items that
1430~ magtoh the oriteria to the first user
iy the custom feed

FiG. 14

U.S. Patent Aug. 9,2016 Sheet 17 of 44 US 9,411,855 B2

150D

(Frigger Rule Lite Cycle™
{ Kethod J

ot

-

Creste o irigoer rule that inchudes
& trigger conudition angd a iggey
srtiom

w 3
Bonttor informsion undedes o
the frigoer condlition

w i
oy the iguer action when
e condiion s delected

Done)

U.S. Patent Aug. 9,2016 Sheet 18 of 44 US 9,411,855 B2

e 100

e - ey
{3‘ rigizer Rule Creation Method §
. F

Fooele s reguest o oreste &
frigger rule for pedorming an
rdormetion update

.......... 16614

&

Determing 8 soope thet defines a

type of information u “jﬁgt f.?(:-s
which the bigger rule applies

e SEH I
w
& ma&m e & brigoer cond
fnstnuntion for detscting &
condifion inan information update
for trigoening an antion

£

ta4

e TBOB

€% R at:%wr;
E“mim(‘n 4] tmﬁ f:t-m' s an aoton

0 ?rfm m whw@ the igger
% chadetand

Store the configured ingoer rule

- -
4 " e, o
Q Done

16

iy
{:QA

U.S. Patent

Aug. 9, 2016 Sheet 19 of 44

)

o Rude Activation
bdethod

US 9,411,855 B2

identify a trigger rule that
& trigoeer aclon e pe
an ndormstion upds

trigiper corul

d

4

Delenming 4 soops e defines
type of irdormation updatae
wehich gy TR AR

the b

e

¥

o

k

2

=¥

*
i

{3

R

e

Dinaes the sehcied nformation

update salishy the tigger condifion?

.

Y

T

3]

Yas
&

i

4

]

i

Parform the igger aotion for the
seloied ndnrmadion update

e

(53

%.

5

N,

D

;
Mo

"—‘m«m«m«««m«m«««)

U.S. Patent Aug. 9,2016 Sheet 20 of 44 US 9,411,855 B2

{”’”" radute Bule Porformanng
%, &ﬁé;‘}ﬁ Q.}{j)

e SRR

ety o travainte rude for
ravmiztiong an informetion wadalie
from e Brel anguages 10 5 second
g hased on g gy
gomdition

k4 K
ideniily an nformation update
craated in s Toad svsiem

s 1806
¥

< Does the nformation updste ing is;ié&a a N

%

. designated portion of alphanumeris te? *‘/

T
6{ fSec

& éc; §-:}$;;;?f;ﬁ&ﬁi;ﬁ%é@{z inoan
inforrmation fead

Fig. 18

U.S. Patent Aug. 9,2016 Sheet 21 of 44 US 9,411,855 B2

Q Agtomatic Messaging Rude

‘:'r..‘.~ oy “; :}3&2 2

Ransbhve g regusst o oreals an
sutomaio messaging rule

4 e RS

identiy o trigoer condition for
crealing & message

I e 6

the created Mmessage

o TR
k4 s

Noacaive an ndicaiion of oordent in

e THI0

i

fdantity o repiplent of the oraated
MGSSHGE

Shows e aulor

U.S. Patent Aug. 9,2016 Sheet 22 of 44

o . e -y ;

¢ Data Object Creation Rule

‘x,v Configuration Method /}
o

e XS

Rocobes o roguest 10 oroste ¢
giata pbiect oresbion rule

e 2004

-
iderdify & igoer corulition for
craaiing & dals object basad an
an niormaticn updals

2008

+
Hlentity o fyvne of dats obiscito
orests

i e 2008

the oreated deta obbact

oS3
¥

Seterming a procedure By
associating the nformaiion
upiade with the orealed dala

afjact

¥
{ Done

US 9,411,855 B2

Fig. 20

U.S. Patent Aug. 9,2016 Sheet 23 of 44 US 9,411,855 B2

e S LHD

(/ Soheduled Information g\.}w{itﬁ&\\g
Rule Creation Mathod J

Vs 202

Rooshvg & regquest to greste a
sohedided information updats
reste

A
k4 d
Lretarmine schaduling informetion
for creating the schaduled
nformation updals

o G

s
ey @ reciplent of the
sohwcduled inforoation updale

oo

» a
Dsterming content o nchuds
within the soheduled informstion
sipsdinte

F4 1

intaite

k. E
Biore the sohegiuled informaiion
update ule

Fig. 21

US 9,411,855 B2

Sheet 24 of 44

Aug. 9,2016

U.S. Patent

2e ‘b4

55 584) pasmus Busg e REB
GO MDY DY JURA N A G WIOLE (T IR

AEHRG i o g

iy

By ol

330 pasy
¥ PR R0 AT S sUvSiios URyY
BIRMDEEF I 18] 501 M1 0N 13Q [Ha1R

By WLBAS 1504 [OB MR

g S g

US 9,411,855 B2

Sheet 25 of 44

Aug. 9,2016

U.S. Patent

Py

6813 P HIEETE

pF

fatisian

BORZORTIUL YeRdeEeT &

US 9,411,855 B2

Sheet 26 of 44

Aug. 9,2016

U.S. Patent

14

c

614

14 R

BOEELIH I3 o

38 EIRAIEE

3G 2897

US 9,411,855 B2

Sheet 27 of 44

Aug. 9,2016

U.S. Patent

g

AR

i
8062 SN PUR R Uy pRYes ey Jrey T
Ua BGYH 2 QI8 D R POL P SN 15 U85

1804 pA8Y
U e BB L A SIS SUSRUIDE URYS
Bupsicpaine oy sar s dnsgeg L dag

SNy WIBRES 1804 Daed ma

g s

US 9,411,855 B2

Sheet 28 of 44

Aug. 9, 2016

U.S. Patent

R

SHERI G

JURHID. g A

e
3000

ey

U.S. Patent Aug. 9,2016 Sheet 29 of 44 US 9,411,855 B2

52
2
2
2
2
2
2
2
2
2
28
2
2
2
2
2
2
2
2
2
2
2
2
28
2
2
2

R
e
R

EEEE—

RN,
B
RN,
RN,
RN,
RN,
RN,
RN,
B
RN,
RN,
RN,
RN,
RN,
B
RN,
RN,
RN,
e
o
R

SRR

U.S. Patent Aug. 9,2016 Sheet 30 of 44 US 9,411,855 B2

Fig. 28

US 9,411,855 B2

Sheet 31 of 44

Aug. 9, 2016

U.S. Patent

-

US 9,411,855 B2

Sheet 32 of 44

Aug. 9, 2016

U.S. Patent

US 9,411,855 B2

Sheet 33 of 44

Aug. 9,2016

U.S. Patent

il

2 .”””””“””””.m,.,”.”,”,”””””””.”,”,”.”,”,”.”,”,”.”,”,”””””””””””””HNNNNNNNNNNH,” S \..Xg&w»« ST ww

U.S. Patent Aug. 9,2016 Sheet 34 of 44 US 9,411,855 B2

US 9,411,855 B2

Sheet 35 of 44

Aug. 9,2016

U.S. Patent

SR
Tk

S e e e e e g

U.S. Patent Aug. 9,2016 Sheet 36 of 44 US 9,411,855 B2

Rt

2

US 9,411,855 B2

Sheet 37 of 44

Aug. 9,2016

U.S. Patent

.v. O e)

e ..“..............................“" 2

e

2 -
m \. “....“““ S S

e 25

US 9,411,855 B2

Sheet 38 of 44

Aug. 9,2016

U.S. Patent

U.S. Patent Aug. 9,2016 Sheet 39 of 44 US 9,411,855 B2

e BT

gf Herpword Life Cuole \§
. Mathod f

]

&

Lok

ety keyvword sondiguration information for o user
sonount

¥
Biordior infrmetion updates for designedad kevwords
inciutded in the kewword configuration information

¥

Whan an nformation update holudes one of the
designaied kaywords, oause the user aooount o folloaw
& data oljedt associated with the information uiate

%
When o desipramisd everd has ooourred, omi
aeoount 10 slop following the data o

a6t user

%

[RVUPINVIVL JvVeIvIeY)

Fig. 37

U.S. Patent Aug. 9,2016 Sheet 40 of 44 US 9,411,855 B2

3
s Herpword Dordigusting
{x Rethond /

racaritoring for g user auoowy

w #
tdentify o soope for merdionng
vformaion opdates for B kayveont nde

e BEOE
¥ &

Germrsie o heyeond suggest
keyword rule

ot e

b 4

gt deniy g keywo

X

S

Hderd

ergd b fudin

iderdily mstod
iduwrotion for the i

sy Earrunaiion
s Bayevecied

e R

-
- additinnal keyweord rulss \«
for raonitonng? <

o B E

P

Siors the Reyword monitormg

By Fig. 38

U.S. Patent

w

Aug. 9, 2016 Sheet 41 of 44

e R

{‘f Heoyword Monflonng

festhod .

by

S S

Rershve Reywond smondioring
configurstion Inforration for g user

oo 354

¥ &
Badedd an dormstion updsle within &

US 9,411,855 B2

&

designuied soops

V4 Do e

¥

update inchude & donigrmieg

S Raaywnrd /,‘/}

iy @t recond aesn
tha selecied dormed

B

omung the uaer aonour o illow the

S,

i 392

Heleol sdditions! nformation .
spatas for kevpeord monioring?

{ E?s,é e

Fig. 39

U.S. Patent Aug. 9,2016 Sheet 42 of 44 US 9,411,855 B2

o SO0

£ Kapword-Based Follwing
Tarmination Method W

Rocsbes @ reguest o moniior iwg iyl
basad following for lenminaiion

oo I
& /

ko charle re mjksiiz,}we{i by o gser
accoun based on & keywond rule

&
ey autio-follow e
irdormation for B keyword rule

i 2008

»»»»»» Terminate the following of the dets "} Yon
Y ratored?
5
% ¢ i

s

Ko rause h
foditvainy

& Lmer sooound 10 siop
sefasted dats revord

» Ve
P
e Mnnitor atditoned deta renordst e

i
Mo

US 9,411,855 B2

Sheet 43 of 44

Aug. 9, 2016

U.S. Patent

US 9,411,855 B2

Sheet 44 of 44

Aug. 9, 2016

U.S. Patent

i

=

e

US 9,411,855 B2

1
TRIGGERING ACTIONS IN AN
INFORMATION FEED SYSTEM

PRIORITY AND RELATED APPLICATION DATA

This application claims priority to and commonly assigned
Provisional U.S. Patent Application No. 61/474,546, titled
“Systems and Methods for Triggering Events Over a Social
Network”, by Kemp, et al., filed on Apr. 12, 2011, Provisional
U.S. Patent Application No. 61/406,524, titled “Performing
Scheduling and Providing Auto-responses via an Enterprise
Business Network Feed”, by Kevin Schraith, filed on Oct. 25,
2010, and Provisional U.S. Patent Application No. 61/416,
204, titled “Chatter Keywords”, by Sopko et al., filed on Nov.
22,2010, all of which are hereby incorporated by reference in
their entirety and for all purposes.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material, which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

TECHNICAL FIELD

The present application relates generally to providing
information updates in an information feed system and, more
specifically, to techniques for analyzing and responding to
information updates.

BACKGROUND

“Cloud computing” services provide shared resources,
software, and information to computers and other devices
upon request. In cloud computing environments, software can
be accessible over the Internet rather than installed locally on
in-house computer systems. Cloud computing typically
involves over-the-Internet provision of dynamically scalable
and often virtualized resources. Technological details can be
abstracted from the users, who no longer have need for exper-
tise in, or control over, the technology infrastructure “in the
cloud” that supports them.

Database resources can be provided in a cloud computing
context. However, using conventional database management
techniques, it is difficult to know about the activity of other
users of a database system in the cloud or other network. For
example, the actions of a particular user, such as a salesper-
son, on a database resource may be important to the user’s
boss. The user can create a report about what the user has done
and send it to the boss, but such reports may be inefficient, not
timely, and incomplete. Also, it may be difficult to identify
other users who might benefit from the information in the
report.

BRIEF DESCRIPTION OF THE DRAWINGS

The included drawings are for illustrative purposes and
serve only to provide examples of possible structures and
process operations for the disclosed inventive systems, appa-
ratus, and methods for performing trigger actions and detect-
ing trigger conditions on an information feed in an informa-
tion feed system. These drawings in no way limit any changes

10

15

20

25

30

35

40

45

55

60

65

2

in form and detail that may be made by one skilled in the art
without departing from the spirit and scope of the disclosed
implementations.

FIG. 1A illustrates a block diagram of an example of an
environment 10 wherein an on-demand database service
might be used.

FIG. 1B illustrates a block diagram of an implementation
of'elements of FIG. 1A and various possible interconnections
between these elements.

FIG. 2A shows a system diagram 200 illustrating architec-
tural components of an on-demand service environment
according to one implementation.

FIG. 2B shows a system diagram further illustrating archi-
tectural components of an on-demand service environment
according to one implementation.

FIG. 3 is a flowchart of a method 300 for tracking updates
to a record stored in a database system according to one or
more implementations.

FIG. 4 is a block diagram of components of a database
system performing a method for tracking an update to a
record according to one or more implementations.

FIG. 5 is a flowchart of a method 500 for tracking actions
of a user of a database system according to one or more
implementations.

FIG. 6 is a flowchart of a method 600 for creating a news
feed from messages created by a user about a record or
another user according to one or more implementations.

FIG. 7 shows an example of a group feed on a group page
according to one or more implementations.

FIG. 8 shows an example of a record feed containing a feed
tracked update, post, and comments according to one or more
implementations.

FIG. 9A shows a plurality of tables that may be used in
tracking events and creating feeds according to one or more
implementations.

FIG. 9B is a flowchart illustrating a method 900 for auto-
matically subscribing a user to an object in a database system
according to implementations.

FIG. 10 is a flowchart of a method 1000 for saving infor-
mation to feed tracking tables according to one or more
implementations.

FIG. 11 is a flowchart of a method 1100 for reading a feed
item as part of generating a feed for display according to one
or more implementations.

FIG. 12 is a flowchart of a method 1200 for reading a feed
item of a profile feed for display according to one or more
implementations.

FIG. 13 is a flowchart of a method 1300 of storing event
information for efficient generation of feed items to display in
a feed according to one or more implementations.

FIG. 14 is a flowchart of a method 1400 for creating a
custom feed for users of a database system using filtering
criteria according to one or more implementations.

FIG. 15 is a flowchart of method 1500 for a trigger rule life
cycle, performed according to one or more implementations.

FIG. 16 is a flowchart of a method 1600 for creating a
trigger rule, performed according to one or more implemen-
tations.

FIG. 17 is a flowchart of a method 1700 for activating a
trigger rule, performed according to one or more implemen-
tations.

FIG. 18 is a flowchart of a method 1800 for performing a
translate rule, performed according to one or more implemen-
tations.

FIG. 19 is a flowchart of a method 1900 for configuring an
automatic messaging rule, performed according to one or
more implementations.

US 9,411,855 B2

3

FIG. 20 is a flowchart of a method 2000 for creating an
automatic data object rule, performed according to one or
more implementations.

FIG. 21 is a flowchart of a method 2100 for creating a
scheduled information update rule, performed according to
one or more implementations.

FIGS. 22-36 show images of user interface components,
generated according to one or more implementations.

FIG. 37 shows a flowchart of'a method 3700 for a keyword
life cycle method, performed according to some implemen-
tations.

FIG. 38 shows a flowchart of a method 3800 for configur-
ing keywords for a user account, performed according to
some implementations.

FIG. 39 shows a flowchart of a method 3900 for monitoring
for a keyword, performed according to some implementa-
tions.

FIG. 40 shows a flowchart of a method 4000 for terminat-
ing keyword-based following, performed according to some
implementations.

FIGS. 41 and 42 show images of user interface compo-
nents, generated according to one or more implementations.

DETAILED DESCRIPTION

Examples of systems, apparatus, and methods according to
the disclosed implementations are described in this section.
These examples are being provided solely to add context and
aid in the understanding of the disclosed implementations. It
will thus be apparent to one skilled in the art that implemen-
tations may be practiced without some or all of these specific
details. In other instances, well known process/method steps
have not been described in detail in order to avoid unneces-
sarily obscuring implementations. Other applications are
possible, such that the following examples should not be
taken as definitive or limiting either in scope or setting.

In the following detailed description, references are made
to the accompanying drawings, which form a part of the
description and in which are shown, by way of illustration,
specific implementations. Although these implementations
are described in sufficient detail to enable one skilled in the art
to practice the disclosed implementations, it is understood
that these examples are not limiting, such that other imple-
mentations may be used and changes may be made without
departing from their spirit and scope. For example, the blocks
of methods shown and described herein are not necessarily
performed in the order indicated. It should also be understood
that the methods may include more or fewer blocks than are
indicated. In some implementations, blocks described herein
as separate blocks may be combined. Conversely, what may
be described herein as a single block may be implemented in
multiple blocks.

The “following” of a database record, as described in
greater detail below, allows a user to track the progress of that
record. Updates to the record, also referred to herein as
changes, can occur and be noted on an information feed such
as the record feed or the news feed of a user subscribed to the
record. With the disclosed implementations, updates are often
presented as an item or entry in the feed, but can also be
presented as a collection of individual of items. Types of such
updates can include field changes in a data record, posts such
as explicit text or characters submitted by a user, status
updates, uploaded files, and links to other data or records.
Also, one type of update is the creation of the record itself.
Updates can also be group-related, e.g., a change to group

10

15

20

25

30

35

40

45

50

55

60

65

4

status information for a group of which the user is a member.
Users following the record are capable of viewing updates on
the user’s feed.

In some implementations, the disclosed methods, appara-
tus, systems, and computer program products may be config-
ured or designed for use in a multi-tenant database environ-
ment.

Various implementations described or referenced herein
are directed to different methods, apparatus, systems, and
computer program products for facilitating the performance
of trigger rules on an information feed in an on-demand
database service environment. The disclosed implementa-
tions provide for creating and activating trigger rules for
automatically responding to information updates. For
example, implementations of the disclosed systems, appara-
tus, and methods are configured to create data objects in
response to detecting designated conditions in information
updates. As another example, implementations of the dis-
closed systems, apparatus, and methods are configured to
cause user account to follow data objects in response to
detecting designated conditions in information updates.

In some implementations, a trigger rule can be created. A
trigger rule may designate one or more trigger conditions and
one or more trigger actions. The system may then compare the
trigger rule with an information update created in an infor-
mation feed system. When the designated trigger condition or
conditions is detected, the designated trigger action or actions
is performed.

In some implementations, a condition may include one or
more text strings included in the information update, status
conditions associated with the information update, informa-
tion update scheduling information, or any other information
accessible via the system. A single trigger rule may be asso-
ciated with various numbers and types of trigger conditions.
A trigger condition may be selected by a user, defined by
custom computer programming language code, or created by
the system.

In some implementations, a designated action may be per-
formed for an information update when a trigger condition is
detected. The action may include altering the information
update, creating a new information update, creating or alter-
ing a data object, removing a data object, sending a message,
creating an information update in a social networking system
accessible via a network such as the Internet (e.g., Twitter®),
or performing any other action capable of being performed by
the system.

In some implementations, the action may include creating
a data object such as a database record based on an informa-
tion update. For example, an information update may be
selected for comparison with a data object creation rule. The
data object creation rule may specify a data object creation
operation for creating the data object. A determination may be
made as to whether the selected information update includes
information satisfying a trigger condition associated with the
data object creation rule. When the information in the
selected information update satisfies the trigger condition, the
data object creation operation may be performed to create the
data object. The data object creation operation may identify
information to include in the data object.

In some implementations, the action may include causing
designated user accounts to follow or stop following a desig-
nated database record, user account, group of user accounts,
or other construct. For example, an information update may
be created in associated with a database record, such as a case.
If the text string “!ALLFOLLOW” or “'UNFOLLOW” is
detected in the information update, then a designated list of
users may be made to follow or stop following the case.

US 9,411,855 B2

5

In some implementations, the action may include translat-
ing an information update when a trigger condition is
detected. For example, a trigger rule may be configured to
translate an information update from one language (e.g.,
English) to another language (e.g., French) when the system
detects that the information update includes the text string
“&translate”. The translated text may be stored on a storage
medium, presented in a new information update, or transmit-
ted in a message.

In some implementations, keywords may be stored in asso-
ciation with a user account. Then, if any of these words is
mentioned in a conversation within the information feed sys-
tem, the user account is made to automatically follow the
users having the conversation. The system may monitor any
information updates that the user account has permission to
view according to a security and privacy model. The follow-
ing action may remain in place until a termination event
occurs, such as the passage of a designated time period.

In some implementations, keyword-based monitoring may
allow users to stay informed about a variety of topics. For
example, a user may plan to be involved with an event in the
future and may wish to know whenever other users mention
the event. As another example, a user may be responsible for
a particular technology or software and may want to know
whenever other users ask questions or discuss problems
related to the technology or software. In these and other
examples, the user could manually search through publicly
available updates, but such searching requires time and effort
and may need to be performed often to be effective. Alter-
nately, the user could follow any users, groups, or data records
that might discuss the topic of interest, but such a strategy
might result in the user receiving an excess of irrelevant
information. Instead, as described herein, the user can specify
one or more keywords for active monitoring. When the sys-
tem finds information updates, data objects, or other informa-
tion within the feed system that matches the keywords, the
user will be informed. The user can receive as much or as little
information related to the identified keyword as desired.

In some implementations, keywords may be displayed
within a profile page or other user interface component within
an information feed system. Keywords displayed within a
profile page may resize dynamically based on various factors
such as the prevalence of the keyword as compared to other
keywords, a designated importance ranking indicated by the
user, or a frequency of occurrence within the information feed
system. The system may suggest or recommend keywords to
users based similarity or relevance to existing keywords. Key-
word entry may employ an auto-complete or selection
mechanism to enforce usage of existing keywords, which
may help in avoiding the creation of many variations of one
term. The system may also prevent designated keywords from
being used.

In some implementations, users may create their own
applications using a framework. For example, a user may
create a class implemented in a computer programming lan-
guage. The class may include methods that override abstract
methods provided in the framework. By overriding these
abstract methods, the user may specify a trigger condition and
trigger action for a trigger rule.

In some implementations, users may communicate in an
information feed system such as a social networking system
by posting information updates that include comments, files,
status information, and other types of information. An infor-
mation feed system may be configured to react to conditions
defined by trigger rules. The trigger rules may extend and
enhance the functionality of the information feed system by
streamlining the performance of an action. For instance,

10

15

20

25

30

35

40

45

50

55

60

65

6

instead of manually causing a collection of user accounts to
follow a data record, the user can simply enter a text string
such as “! ALLFOLLOW?” into an information update and let
the system automatically perform the action. As another
example, instead of manually creating a database record and
manually populating its content, the user can simply enter a
text string such as “!CASE” and let the system automatically
create the database record based on the information update.
As yet another example, a user such as a manager may auto-
matically follow a particularly active discussion, such as one
with more than ten reply comments to a post, in order to be
aware of hot-button issues within the feed system. As still
another example, a user may be notified if a comment is
postedto a Case data object that has a status of “Closed,” since
normally such a case might be expected to remain dormant.
As still another example, a user following a designated key-
word (e.g., an account name) may be notified if the status of
an Opportunity database record for the account changes from
“Dead” or “Closed” to a different status, such as “Pending.

In one example, two users named Chet and Cindy may be
discussing a problem with Windows® via information
updates posted in an information feed. Chet may wish to
create a “Case” database object in a customer relations man-
agement (CRM) system in order to resolve the problem.
Instead of manually creating the database object, Chet can
simply post an information update that includes the text string
“Icase”” Chet’s information update may then be compared
with a predefined trigger rule for automatically creating a
case. The predefined trigger rule may specify that a case will
be automatically created when the text string “!case” is
detected. Thus, the trigger rule may be activated to automati-
cally create the case. The case may include information drawn
from any associated information updates. For example, the
information updates may be added to the comments associ-
ated with the case.

In one example, an administrator may set a regular weekly
update that is going to go out every week at a certain time. The
weekly update may remind users to post a timecard before
leaving for the weekend. For example, the user named Chet
may receive an information update on Friday that states: “The
end of the week is coming fast! Don’t forget to post your
timecard to the system before you go home for the weekend!
Thanks, The Mgmt.”

In one example, an administrator may create a rule to
automatically respond to the phrase “order 66” that relates to
a topic that users are forbidden to discuss. The system may
then monitor posts to detect the presence of the “order 66
phrase. The automatic process searching for the phrase “order
66 may run periodically (e.g., every hour), on demand, or for
each new information update created. When Chet posts an
information update that includes the text “Order 66 is a really
bad idea,” the system may automatically generate an infor-
mation update in response that reminds Chet that discussion
of the topic is not permitted.

In one example, an H.R. employee named Chet wants to be
included on any conversations that mention the new
employee H.R. management software he has implemented,
called HRForce. Chet can go to his Chatter profile page, scroll
to the section in the right sidebar labeled “Key Words,” and
click the edit icon. An input box appears, allowing Chet to
enter “HRForce” and the number of days to follow any
employees that mention the term. Chet then click a Save
button, and the word HRForce appears in the appropriate key
words section. One week later, an employee posts an infor-
mation update directed at another employee that states: “I’m
really enjoying being able to see all of my benefits in
HRForce, 1 just wish there were more documentation to go

US 9,411,855 B2

7

along with it.” In this example, Chet is made to immediately
begin following both employees for the number of days speci-
fied, and the relevant conversation now appears in Chet’s
information feed.

These and other implementations may be implemented by
various types of hardware, software, firmware, etc. For
example, some implementations may be implemented, at
least in part, by machine-readable media that include program
instructions, state information, etc., for performing various
services and operations described herein. Examples of pro-
gram instructions include both machine code, such as pro-
duced by a compiler, and files containing higher-level code
that may be executed by the computer using an interpreter.
Examples of machine-readable media include, but are not
limited to, magnetic media such as hard disks, floppy disks,
and magnetic tape; optical media such as CD-ROM disks;
magneto-optical media; and hardware devices that are spe-
cially configured to store program instructions, such as read-
only memory devices (“ROM”) and random access memory
(“RAM”). These and other features and benefits of the dis-
closed implementations will be described in more detail
below with reference to the associated drawings.

The term “multi-tenant database system” can refer to those
systems in which various elements of hardware and software
of the database system may be shared by one or more cus-
tomers. For example, a given application server may simul-
taneously process requests for a great number of customers,
and a given database table may store rows for a potentially
much greater number of customers. The term “query plan”
generally refers to one or more steps used to access informa-
tion in a database system.

A “user profile” or “user’s profile” is generally configured
to store and maintain data about the user of the database
system. The data can include general information, such as
title, phone number, a photo, a biographical summary, and a
status (e.g., text describing what the user is currently doing).
As mentioned below, the data can include messages created
by other users. Where there are multiple tenants, a user is
typically associated with a particular tenant. For example, a
user could be a salesperson of a company that is a tenant of the
database system that provides a database service.

The term “record” generally refers to a data entity, such as
an instance of a data object created by a user of the database
service, for example, about a particular (actual or potential)
business relationship or project. The data object can have a
data structure defined by the database service (a standard
object) or defined by a subscriber (custom object). For
example, a record can be for a business partner or potential
business partner (e.g. a client, vendor, distributor, etc.) of the
user, and can include an entire company, subsidiaries, or
contacts at the company. As another example, a record can be
a project that the user is working on, such as an opportunity
(e.g. a possible sale) with an existing partner, or a project that
the user is trying to get. In one implementation implementing
a multi-tenant database, all of the records for the tenants have
anidentifier stored ina common table. A record has data fields
that are defined by the structure of the object (e.g. fields of
certain data types and purposes). A record can also have
custom fields defined by a user. A field can be another record
or include links thereto, thereby providing a parent-child
relationship between the records.

The terms “feed” and “information feed” generally include
acombination (e.g. a list) of feed items or entries with various
types of information and data. Such feed items can be stored
and maintained in one or more databasetables, e.g., as rows in
the table(s), that can be accessed to retrieve relevant informa-
tionto be presented as part of a displayed feed. The term “feed

10

15

20

25

30

35

40

45

50

55

60

65

8

item” (or feed element) refers to information about a user
(“profile feed”) of the database or about a record (“record
feed”) in the database. A profile feed and a record feed are
examples of different information feeds. A user following the
user or record can receive the associated feed items. In some
implementations, the feed items from all of the followed users
and records can be combined into a single feed for the user.

As examples, a feed item can be a message, such as a
user-generated post of text data, and a feed tracked update to
arecord or profile, such as a change to a field of the record. A
feed can be a combination of messages and feed tracked
updates. Messages include text created by a user, and may
include other data as well. Examples of messages include
posts, user status updates, and comments. Messages can be
created for auser’s profile or for a record. Posts can be created
by various users, potentially any user, although some restric-
tions can be applied. As an example, posts can be made to a
wall section of a user’s profile (which can include a number of
recent posts) or a section of a record that includes multiple
posts. The posts can be organized in chronological order
when displayed in a graphical user interface (GUI) as part of
a feed. In contrast to a post, a user status update changes a
status of a user and can be made by that user or an adminis-
trator. Other similar sections of a user’s profile can also
include an “About” section. A record can also have a status,
whose update can be provided by an owner of the record or
other users having suitable write access permissions to the
record. The owner can be a single user, multiple users, or a
group. In one implementation, there is only one status for a
record. In one implementation, a comment can be made on
any feed item. In another implementation, comments are
organized as a list explicitly tied to a particular feed tracked
update, post, or status update. In this implementation, com-
ments may not be listed in the first layer (in a hierarchal sense)
of feed items, but listed as a second layer branching from a
particular first layer feed item.

A “feed tracked update,” also referred to herein as a “feed
update,” generally refers to data representing an event, and
can include text generated by the database system in response
to the event, to be provided as one or more feed items for
possible inclusion in one or more feeds. In one implementa-
tion, the data can initially be stored, and then the database
system can later use the data to create text for describing the
event. Both the data and/or the text can be a feed tracked
update, as used herein. In various implementations, an event
can be an update of a record and/or can be triggered by a
specific action by auser. Which actions trigger an event can be
configurable. Which events have feed tracked updates created
and which feed updates are sent to which users can also be
configurable. Messages and feed updates can be stored as a
field or child object of the record. For example, the feed can be
stored as a child object of the record.

A “group” is generally a collection of users. In some
aspects, the group may be defined as users with a same or
similar attribute, or by membership. In one implementation, a
“group feed” includes any feed item about any user ina group.
In another implementation, the group feed includes feed
items that are about the group as a whole. In one implemen-
tation, the feed items for a group are only posts and com-
ments.

An “entity feed” or “record feed” generally refers to a feed
of'feed items about a particular record in the database, such as
feed tracked updates about changes to the record and posts
made by users about the record. An entity feed can be com-
posed of any type of feed item. Such a feed can be displayed
on a page (e.g. a web page) associated with the record (e.g. a
home page of the record). As used herein, a “profile feed” is

US 9,411,855 B2

9

a feed of feed items about a particular user. In one implemen-
tation, the feed items for a profile feed are posts and com-
ments that other users make about or send to the particular
user, and status updates made by the user. Such a profile feed
can be displayed on a page associated with the particular user.
In another implementation, feed items in a profile feed could
include posts made by the particular user and feed tracked
changes (feed tracked updates) initiated based on actions of
the particular user.

1. General Overview

Systems, apparatus, and methods are provided for imple-
menting enterprise level social and business information net-
working. Such implementations can provide more efficient
use of a database system. For instance, a user of a database
system may not easily know when important information in
the database has changed, e.g., about a project or client.
Implementations can provide feed tracked updates about such
changes and other events, thereby keeping users informed.

By way of example, a user can update a record (e.g. an
opportunity such as a possible sale of 1000 computers). Once
the record update has been made, a feed tracked update about
the record update can then automatically be sent (e.g. in a
feed) to anyone subscribing to the opportunity or to the user.
Thus, the user does not need to contact a manager regarding
the change in the opportunity, since the feed tracked update
about the update is sent via a feed right to the manager’s feed
page (or other page).

Next, mechanisms and methods for providing systems
implementing enterprise level social and business informa-
tion networking will be described with reference to example
implementations. First, an overview of an example database
system is described, and then examples of tracking events for
arecord, actions of auser, and messages about a user or record
are described. Various implementations about the data struc-
ture of feeds, customizing feeds, user selection of records and
users to follow, generating feeds, and displaying feeds are
also described.

II. System Overview

FIG. 1A illustrates a block diagram of an environment 10
wherein an on-demand database service might be used. Envi-
ronment 10 may include user systems 12, network 14, system
16, processor system 17, application platform 18, network
interface 20, tenant data storage 22, system data storage 24,
program code 26, and process space 28. In other implemen-
tations, environment 10 may not have all of the components
listed and/or may have other elements instead of, or in addi-
tion to, those listed above.

Environment 10 is an environment in which an on-demand
database service exists. User system 12 may be any machine
or system that is used by a user to access a database user
system. For example, any of user systems 12 can be a hand-
held computing device, a mobile phone, a laptop computer, a
work station, and/or a network of computing devices. As
illustrated in FIG. 1A (and in more detail in FIG. 1B) user
systems 12 might interact via a network 14 with an on-de-
mand database service, which is system 16.

An on-demand database service, such as system 16, is a
database system that is made available to outside users that do
not need to necessarily be concerned with building and/or
maintaining the database system, but instead may be available
for their use when the users need the database system (e.g., on
the demand of the users). Some on-demand database services
may store information from one or more tenants stored into
tables of a common database image to form a multi-tenant
database system (MTS). Accordingly, “on-demand database
service 16” and “system 16" will be used interchangeably
herein. A database image may include one or more database

10

20

30

40

45

55

10

objects. A relational database management system (RDBMS)
or the equivalent may execute storage and retrieval of infor-
mation against the database object(s). Application platform
18 may be a framework that allows the applications of system
16 to run, such as the hardware and/or software, e.g., the
operating system. In an implementation, on-demand database
service 16 may include an application platform 18 that
enables creation, managing and executing one or more appli-
cations developed by the provider of the on-demand database
service, users accessing the on-demand database service via
user systems 12, or third party application developers access-
ing the on-demand database service via user systems 12.

The users of user systems 12 may differ in their respective
capacities, and the capacity of a particular user system 12
might be entirely determined by permissions (permission
levels) for the current user. For example, where a salesperson
is using a particular user system 12 to interact with system 16,
that user system has the capacities allotted to that salesperson.
However, while an administrator is using that user system to
interact with system 16, that user system has the capacities
allotted to that administrator. In systems with a hierarchical
role model, users at one permission level may have access to
applications, data, and database information accessible by a
lower permission level user, but may not have access to cer-
tain applications, database information, and data accessible
by a user at a higher permission level. Thus, different users
will have different capabilities with regard to accessing and
modifying application and database information, depending
on a user’s security or permission level, also called authori-
zation.

Network 14 is any network or combination of networks of
devices that communicate with one another. For example,
network 14 can be any one or any combination of a LAN
(local area network), WAN (wide area network), telephone
network, wireless network, point-to-point network, star net-
work, token ring network, hub network, or other appropriate
configuration. As the most common type of computer net-
work in current use is a TCP/IP (Transter Control Protocol
and Internet Protocol) network, such as the global internet-
work of networks often referred to as the “Internet” with a
capital “1,” that network will be used in many of the examples
herein. However, it should be understood that the networks
that the present implementations might use are not so limited,
although TCP/IP is a frequently implemented protocol.

User systems 12 might communicate with system 16 using
TCP/IP and, at a higher network level, use other common
Internet protocols to communicate, such as HI'TP, FTP, AFS,
WAP, etc. In an example where HTTP is used, user system 12
might include an HTTP client commonly referred to as a
“browser” for sending and receiving HTTP messages to and
from an HTTP server at system 16. Such an HTTP server
might be implemented as the sole network interface between
system 16 and network 14, but other techniques might be used
as well or instead. In some implementations, the interface
between system 16 and network 14 includes load sharing
functionality, such as round-robin HTTP request distributors
to balance loads and distribute incoming HTTP requests
evenly over a plurality of servers. At least as for the users that
are accessing that server, each of the plurality of servers has
access to the MTS’ data; however, other alternative configu-
rations may be used instead.

In one implementation, system 16, shown in FIG. 1A,
implements a web-based customer relationship management
(CRM) system. For example, in one implementation, system
16 includes application servers configured to implement and
execute CRM software applications as well as provide related
data, code, forms, webpages and other information to and

US 9,411,855 B2

11

from user systems 12 and to store to, and retrieve from, a
database system related data, objects, and Webpage content.
With a multi-tenant system, data for multiple tenants may be
stored in the same physical database object, however, tenant
data typically is arranged so that data of one tenant is kept
logically separate from that of other tenants so that one tenant
does not have access to another tenant’s data, unless such data
is expressly shared. In certain implementations, system 16
implements applications other than, or in addition to, a CRM
application. For example, system 16 may provide tenant
access to multiple hosted (standard and custom) applications,
including a CRM application. User (or third party developer)
applications, which may or may not include CRM, may be
supported by the application platform 18, which manages
creation, storage of the applications into one or more database
objects and executing of the applications in a virtual machine
in the process space of the system 16.

One arrangement for elements of system 16 is shown in
FIG. 1A, including a network interface 20, application plat-
form 18, tenant data storage 22 for tenant data 23, system data
storage 24 for system data 25 accessible to system 16 and
possibly multiple tenants, program code 26 for implementing
various functions of system 16, and a process space 28 for
executing MTS system processes and tenant-specific pro-
cesses, such as running applications as part of an application
hosting service. Additional processes that may execute on
system 16 include database indexing processes.

Several elements in the system shown in FIG. 1A include
conventional, well-known elements that are explained only
briefly here. For example, each user system 12 could include
a desktop personal computer, workstation, laptop, PDA, cell
phone, or any wireless access protocol (WAP) enabled device
or any other computing device capable of interfacing directly
or indirectly to the Internet or other network connection. User
system 12 typically runs an HTTP client, e.g., a browsing
program, such as Microsoft’s Internet Explorer browser,
Netscape’s Navigator browser, Opera’s browser, or a WAP-
enabled browser in the case of a cell phone, PDA or other
wireless device, or the like, allowing a user (e.g., subscriber of
the multi-tenant database system) of user system 12 to access,
process and view information, pages and applications avail-
able to it from system 16 over network 14. Each user system
12 also typically includes one or more user interface devices,
such as a keyboard, a mouse, trackball, touch pad, touch
screen, pen or the like, for interacting with a graphical user
interface (GUI) provided by the browser on a display (e.g., a
monitor screen, LCD display, etc.) in conjunction with pages,
forms, applications and other information provided by system
16 or other systems or servers. For example, the user interface
device can be used to access data and applications hosted by
system 16, and to perform searches on stored data, and oth-
erwise allow a user to interact with various GUI pages that
may be presented to a user. As discussed above, implemen-
tations are suitable for use with the Internet, which refers to a
specific global internetwork of networks. However, it should
be understood that other networks can be used instead of the
Internet, such as an intranet, an extranet, a virtual private
network (VPN), a non-TCP/IP based network, any LAN or
WAN or the like.

According to one implementation, each user system 12 and
all of its components are operator configurable using appli-
cations, such as a browser, including computer code run using
a central processing unit such as an Intel Pentium® processor
or the like. Similarly, system 16 (and additional instances of
an MTS, where more than one is present) and all of their
components might be operator configurable using appli-
cation(s) including computer code to run using a central pro-

25

40

45

55

12

cessing unit such as processor system 17, which may include
an Intel Pentium® processor or the like, and/or multiple pro-
cessor units. A computer program product implementation
includes a machine-readable storage medium (media) having
instructions stored thereon/in which can be used to program a
computer to perform any of the processes of the implemen-
tations described herein. Computer code for operating and
configuring system 16 to intercommunicate and to process
webpages, applications and other data and media content as
described herein are preferably downloaded and stored on a
hard disk, but the entire program code, or portions thereof,
may also be stored in any other volatile or non-volatile
memory medium or device as is well known, such as a ROM
or RAM, or provided on any media capable of storing pro-
gram code, such as any type of rotating media including
floppy disks, optical discs, digital versatile disk (DVD), com-
pact disk (CD), microdrive, and magneto-optical disks, and
magnetic or optical cards, nanosystems (including molecular
memory ICs), or any type of media or device suitable for
storing instructions and/or data. Additionally, the entire pro-
gram code, or portions thereof, may be transmitted and down-
loaded from a software source over a transmission medium,
e.g., over the Internet, or from another server, as is well
known, or transmitted over any other conventional network
connection as is well known (e.g., extranet, VPN, LAN; etc.)
using any communication medium and protocols (e.g., TCP/
1P, HTTP, HTTPS, Ethernet, etc.) as are well known. It will
also be appreciated that computer code for implementing
implementations of the present invention can be implemented
in any programming language that can be executed on a client
system and/or server or server system such as, for example, C,
C++, HTML, any other markup language, Java™, JavaScript,
ActiveX, any other scripting language, such as VBScript, and
many other programming languages as are well known may
be used. (Java™ is a trademark of Sun Microsystems, Inc.).

According to one implementation, each system 16 is con-
figured to provide webpages, forms, applications, data and
media content to user (client) systems 12 to support the access
by user systems 12 as tenants of system 16. As such, system
16 provides security mechanisms to keep each tenant’s data
separate unless the data is shared. If more than one MTS is
used, they may be located in close proximity to one another
(e.g., in a server farm located in a single building or campus),
or they may be distributed at locations remote from one
another (e.g., one or more servers located in city A and one or
more servers located in city B). As used herein, each MTS
could include one or more logically and/or physically con-
nected servers distributed locally or across one or more geo-
graphic locations. Additionally, the term “server” is meant to
include a computer system, including processing hardware
and process space(s), and an associated storage system and
database application (e.g., OODBMS or RDBMS) as is well
known in the art. It should also be understood that “server
system” and “server” are often used interchangeably herein.
Similarly, the database object described herein can be imple-
mented as single databases, a distributed database, a collec-
tion of distributed databases, a database with redundant
online or offline backups or other redundancies, etc., and
might include a distributed database or storage network and
associated processing intelligence.

FIG. 1B also illustrates environment 10. However, in FIG.
1B elements of system 16 and various interconnections in an
implementation are further illustrated. FIG. 1B shows that
user system 12 may include processor system 12A, memory
system 12B, input system 12C, and output system 12D. FIG.
1B shows network 14 and system 16. FIG. 1B also shows that
system 16 may include tenant data storage 22, tenant data 23,

US 9,411,855 B2

13

system data storage 24, system data 25, User Interface (UI)
30, Application Program Interface (API) 32, PL/SOQL 34,
save routines 36, application setup mechanism 38, applica-
tions servers 1001-100N, system process space 102, tenant
process spaces 104, tenant management process space 110,
tenant storage area 112, user storage 114, and application
metadata 116. In other implementations, environment 10 may
not have the same elements as those listed above and/or may
have other elements instead of, or in addition to, those listed
above.

User system 12, network 14, system 16, tenant data storage
22, and system data storage 24 were discussed above in FIG.
1A. Regarding user system 12, processor system 12A may be
any combination of one or more processors. Memory system
12B may be any combination of one or more memory devices,
short term, and/or long term memory. Input system 12C may
be any combination of input devices, such as one or more
keyboards, mice, trackballs, scanners, cameras, and/or inter-
faces to networks. Output system 12D may be any combina-
tion of output devices, such as one or more monitors, printers,
and/or interfaces to networks. As shown by FIG. 1B, system
16 may include a network interface 20 (of FIG. 1A) imple-
mented as a set of HTTP application servers 100, an applica-
tion platform 18, tenant data storage 22, and system data
storage 24. Also shown is system process space 102, includ-
ing individual tenant process spaces 104 and a tenant man-
agement process space 110. Each application server 100 may
be configured to tenant data storage 22 and the tenant data 23
therein, and system data storage 24 and the system data 25
therein to serve requests of user systems 12. The tenant data
23 might be divided into individual tenant storage areas 112,
which can be either a physical arrangement and/or a logical
arrangement of data. Within each tenant storage area 112,
user storage 114 and application metadata 116 might be simi-
larly allocated for each user. For example, a copy of a user’s
most recently used (MRU) items might be stored to user
storage 114. Similarly, a copy of MRU items for an entire
organization that is a tenant might be stored to tenant storage
area 112. A UI 30 provides a user interface and an API 32
provides an application programmer interface to system 16
resident processes to users and/or developers at user systems
12. The tenant data and the system data may be stored in
various databases, such as one or more Oracle| databases.

Application platform 18 includes an application setup
mechanism 38 that supports application developers’ creation
and management of applications, which may be saved as
metadata into tenant data storage 22 by save routines 36 for
execution by subscribers as one or more tenant process spaces
104 managed by tenant management process 110 for
example. Invocations to such applications may be coded
using PL/SOQL 34 that provides a programming language
style interface extension to API 32. A detailed description of
some PL/SOQL language implementations is discussed in
commonly owned U.S. Provisional Patent Application
60/828,192 entitled, PROGRAMMING LANGUAGE
METHOD AND SYSTEM FOR EXTENDING APIS TO
EXECUTE IN CONJUNCTION WITH DATABASE APIS,
by Craig Weissman, filed Oct. 4, 2006, which is hereby incor-
porated by reference in its entirety and for all purposes. Invo-
cations to applications may be detected by one or more sys-
tem processes, which manage retrieving application metadata
116 for the subscriber making the invocation and executing
the metadata as an application in a virtual machine.

Each application server 100 may be communicably
coupled to database systems, e.g., having access to system
data 25 and tenant data 23, via a different network connection.
For example, one application server 1001 might be coupled

10

30

40

45

55

14

via the network 14 (e.g., the Internet), another application
server 100N-1 might be coupled via a direct network link, and
another application server 100N might be coupled by yet a
different network connection. Transfer Control Protocol and
Internet Protocol (TCP/IP) are typical protocols for commu-
nicating between application servers 100 and the database
system. However, it will be apparent to one skilled in the art
that other transport protocols may be used to optimize the
system depending on the network interconnect used.

In certain implementations, each application server 100 is
configured to handle requests for any user associated with any
organization that is a tenant. Because it is desirable to be able
to add and remove application servers from the server pool at
any time for any reason, there is preferably no server affinity
for a user and/or organization to a specific application server
100. In one implementation, therefore, an interface system
implementing a load balancing function (e.g., an F5 Big-IP
load balancer) is communicably coupled between the appli-
cation servers 100 and the user systems 12 to distribute
requests to the application servers 100. In one implementa-
tion, the load balancer uses a least connections algorithm to
route user requests to the application servers 100. Other
examples of load balancing algorithms, such as round robin
and observed response time, also can be used. For example, in
certain implementations, three consecutive requests from the
same user could hit three different application servers 100,
and three requests from different users could hit the same
application server 100. In this manner, system 16 is multi-
tenant, wherein system 16 handles storage of, and access to,
different objects, data and applications across disparate users
and organizations.

As an example of storage, one tenant might be a company
that employs a sales force where each salesperson uses sys-
tem 16 to manage their sales process. Thus, a user might
maintain contact data, leads data, customer follow-up data,
performance data, goals and progress data, etc., all applicable
to that user’s personal sales process (e.g., in tenant data stor-
age 22). In an example of a MTS arrangement, since all of the
data and the applications to access, view, modify, report,
transmit, calculate, etc., can be maintained and accessed by a
user system having nothing more than network access, the
user can manage his or her sales efforts and cycles from any
of many different user systems. For example, if a salesperson
is visiting a customer and the customer has Internet access in
their lobby, the salesperson can obtain critical updates as to
that customer while waiting for the customer to arrive in the
lobby.

While each user’s data might be separate from other users’
data regardless of the employers of each user, some data
might be organization-wide data shared or accessible by a
plurality of users or all of the users for a given organization
that is a tenant. Thus, there might be some data structures
managed by system 16 that are allocated at the tenant level
while other data structures might be managed at the user level.
Because an MTS might support multiple tenants including
possible competitors, the MTS should have security protocols
that keep data, applications, and application use separate.
Also, because many tenants may opt for access to an MTS
rather than maintain their own system, redundancy, up-time,
and backup are additional functions that may be implemented
in the MTS. In addition to user-specific data and tenant-
specific data, system 16 might also maintain system level data
usable by multiple tenants or other data. Such system level
data might include industry reports, news, postings, and the
like that are sharable among tenants.

In certain implementations, user systems 12 (which may be
client systems) communicate with application servers 100 to

US 9,411,855 B2

15

request and update system-level and tenant-level data from
system 16 that may require sending one or more queries to
tenant data storage 22 and/or system data storage 24. System
16 (e.g., an application server 100 in system 16) automati-
cally generates one or more SQL statements (e.g., one or
more SQL queries) that are designed to access the desired
information. System data storage 24 may generate query
plans to access the requested data from the database.

Each database can generally be viewed as a collection of
objects, such as a set of logical tables, containing data fitted
into predefined categories. A “table” is one representation of
a data object, and may be used herein to simplify the concep-
tual description of objects and custom objects according to
implementations of the present invention. It should be under-
stood that “table” and “object” may be used interchangeably
herein. Each table generally contains one or more data cat-
egories logically arranged as columns or fields in a viewable
schema. Each row or record of a table contains an instance of
data for each category defined by the fields. For example, a
CRM database may include a table that describes a customer
with fields for basic contact information such as name,
address, phone number, fax number, etc. Another table might
describe a purchase order, including fields for information
such as customer, product, sale price, date, etc. In some multi-
tenant database systems, standard entity tables might be pro-
vided for use by all tenants. For CRM database applications,
such standard entities might include tables for Account, Con-
tact, Lead, and Opportunity data, each containing pre-defined
fields. It should be understood that the word “entity” may also
be used interchangeably herein with “object” and “table”.

In some multi-tenant database systems, tenants may be
allowed to create and store custom objects, or they may be
allowed to customize standard entities or objects, for example
by creating custom fields for standard objects, including cus-
tom index fields. U.S. Pat. No. 7,779,039 by Weissman et al.,
filed Apr. 2, 2004, entitled “Custom Entities and Fields in a
Multi-Tenant Database System”, and which is hereby incor-
porated by reference in its entirety and for all purposes,
teaches systems and methods for creating custom objects as
well as customizing standard objects in a multi-tenant data-
base system. In certain implementations, for example, all
custom entity data rows are stored in a single multi-tenant
physical table, which may contain multiple logical tables per
organization. It is transparent to customers that their multiple
“tables” are in fact stored in one large table or that their data
may be stored in the same table as the data of other customers.

FIG. 2A shows a system diagram 200 illustrating architec-
tural components of an on-demand service environment, in
accordance with one implementation.

A client machine located in the cloud 204 (or Internet) may
communicate with the on-demand service environment via
one or more edge routers 208 and 212. The edge routers may
communicate with one or more core switches 220 and 224 via
firewall 216. The core switches may communicate with a load
balancer 228, which may distribute server load over different
pods, such as the pods 240 and 244. The pods 240 and 244,
which may each include one or more servers and/or other
computing resources, may perform data processing and other
operations used to provide on-demand services. Communi-
cation with the pods may be conducted via pod switches 232
and 236. Components of the on-demand service environment
may communicate with a database storage system 256 via a
database firewall 248 and a database switch 252.

As shown in FIGS. 2A and 2B, accessing an on-demand
service environment may involve communications transmit-
ted among a variety of different hardware and/or software
components. Further, the on-demand service environment

10

15

20

25

30

35

40

45

50

55

60

65

16

200 is a simplified representation of an actual on-demand
service environment. For example, while only one or two
devices of each type are shown in FIGS. 2A and 2B, some
implementations of an on-demand service environment may
include anywhere from one to many devices of each type.
Also, the on-demand service environment need not include
each device shown in FIGS. 2A and 2B, or may include
additional devices not shown in FIGS. 2A and 2B.

Moreover, one or more of the devices in the on-demand
service environment 200 may be implemented on the same
physical device or on different hardware. Some devices may
be implemented using hardware or a combination of hard-
ware and software. Thus, terms such as “data processing
apparatus,” “machine,” “server” and “device” as used herein
are not limited to a single hardware device, but rather include
any hardware and software configured to provide the
described functionality.

The cloud 204 is intended to refer to a data network or
plurality of data networks, often including the Internet. Client
machines located in the cloud 204 may communicate with the
on-demand service environment to access services provided
by the on-demand service environment. For example, client
machines may access the on-demand service environment to
retrieve, store, edit, and/or process information.

In some implementations, the edge routers 208 and 212
route packets between the cloud 204 and other components of
the on-demand service environment 200. The edge routers
208 and 212 may employ the Border Gateway Protocol
(BGP). The BGP is the core routing protocol of the Internet.
The edge routers 208 and 212 may maintain a table of IP
networks or ‘prefixes’ which designate network reachability
among autonomous systems on the Internet.

In one or more implementations, the firewall 216 may
protect the inner components of the on-demand service envi-
ronment 200 from Internet traffic. The firewall 216 may
block, permit, or deny access to the inner components of the
on-demand service environment 200 based upon a set of rules
and other criteria. The firewall 216 may act as one or more of
apacket filter, an application gateway, a stateful filter, a proxy
server, or any other type of firewall.

In some implementations, the core switches 220 and 224
are high-capacity switches that transfer packets within the
on-demand service environment 200. The core switches 220
and 224 may be configured as network bridges that quickly
route data between different components within the on-de-
mand service environment. In some implementations, the use
of two or more core switches 220 and 224 may provide
redundancy and/or reduced latency.

In some implementations, the pods 240 and 244 may per-
form the core data processing and service functions provided
by the on-demand service environment. Each pod may
include various types of hardware and/or software computing
resources. An example of the pod architecture is discussed in
greater detail with reference to FIG. 2B.

In some implementations, communication between the
pods 240 and 244 may be conducted via the pod switches 232
and 236. The pod switches 232 and 236 may facilitate com-
munication between the pods 240 and 244 and client
machines located in the cloud 204, for example via core
switches 220 and 224. Also, the pod switches 232 and 236
may facilitate communication between the pods 240 and 244
and the database storage 256.

In some implementations, the load balancer 228 may dis-
tribute workload between the pods 240 and 244. Balancing
the on-demand service requests between the pods may assist
in improving the use of resources, increasing throughput,

29 <

US 9,411,855 B2

17

reducing response times, and/or reducing overhead. The load
balancer 228 may include multilayer switches to analyze and
forward traffic.

In some implementations, access to the database storage
256 may be guarded by a database firewall 248. The database
firewall 248 may act as a computer application firewall oper-
ating at the database application layer of a protocol stack. The
database firewall 248 may protect the database storage 256
from application attacks such as structure query language
(SQL) injection, database rootkits, and unauthorized infor-
mation disclosure.

In some implementations, the database firewall 248 may
include a host using one or more forms of reverse proxy
services to proxy traffic before passing it to a gateway router.
The database firewall 248 may inspect the contents of data-
base traffic and block certain content or database requests.
The database firewall 248 may work on the SQL application
level atop the TCP/IP stack, managing applications’ connec-
tion to the database or SQL. management interfaces as well as
intercepting and enforcing packets traveling to or from a
database network or application interface.

In some implementations, communication with the data-
base storage system 256 may be conducted via the database
switch 252. The multi-tenant database system 256 may
include more than one hardware and/or software components
for handling database queries. Accordingly, the database
switch 252 may direct database queries transmitted by other
components of the on-demand service environment (e.g., the
pods 240 and 244) to the correct components within the
database storage system 256.

In some implementations, the database storage system 256
is an on-demand database system shared by many different
organizations. The on-demand database system may employ
a multi-tenant approach, a virtualized approach, or any other
type of database approach. An on-demand database system is
discussed in greater detail with reference to FIGS. 1A and 1B.

FIG. 2B shows a system diagram illustrating the architec-
ture of the pod 244, in accordance with one implementation.
The pod 244 may be used to render services to a user of the
on-demand service environment 200.

In some implementations, each pod may include a variety
of servers and/or other systems. The pod 244 includes one or
more content batch servers 264, content search servers 268,
query servers 272, file force servers 276, access control sys-
tem (ACS) servers 280, batch servers 284, and app servers
288. Also, the pod 244 includes database instances 290, quick
file systems (QFS) 292, and indexers 294. In one or more
implementations, some or all communication between the
servers in the pod 244 may be transmitted via the switch 236.

In some implementations, the application servers 288 may
include a hardware and/or software framework dedicated to
the execution of procedures (e.g., programs, routines, scripts)
for supporting the construction of applications provided by
the on-demand service environment 200 via the pod 244.
Some such procedures may include operations for providing
the services described herein, such as performing the meth-
ods/processes described below with reference to FIGS. 15-21
and 37-40. In alternative implementations, two or more app
servers 288 may be included and cooperate to perform such
methods, or one or more other servers in FIG. 2B can be
configured to perform the disclosed methods described
below.

The content batch servers 264 may requests internal to the
pod. These requests may be long-running and/or not tied to a
particular customer. For example, the content batch servers
264 may handle requests related to log mining, cleanup work,
and maintenance tasks.

10

15

20

25

30

35

40

45

50

55

60

65

18

The content search servers 268 may provide query and
indexer functions. For example, the functions provided by the
content search servers 268 may allow users to search through
content stored in the on-demand service environment.

The Fileforce servers 276 may manage requests informa-
tion stored in the Fileforce storage 278. The Fileforce storage
278 may store information such as documents, images, and
basic large objects (BLOBs). By managing requests for infor-
mation using the Fileforce servers 276, the image footprint on
the database may be reduced.

The query servers 272 may be used to retrieve information
from one or more file systems. For example, the query system
272 may receive requests for information from the app serv-
ers 288 and then transmit information queries to the NFS 296
located outside the pod.

The pod 244 may share a database instance 290 configured
as a multi-tenant environment in which different organiza-
tions share access to the same database. Additionally, services
rendered by the pod 244 may require various hardware and/or
software resources. In some implementations, the ACS serv-
ers 280 may control access to data, hardware resources, or
software resources.

In some implementations, the batch servers 284 may pro-
cess batch jobs, which are used to run tasks at specified times.
Thus, the batch servers 284 may transmit instructions to other
servers, such as the app servers 288, to trigger the batch jobs.

In some implementations, the QFS 292 may be an open
source file system available from Sun Microsystems® of
Santa Clara, Calif. The QFS may serve as a rapid-access file
system for storing and accessing information available within
the pod 244. The QFS 292 may support some volume man-
agement capabilities, allowing many disks to be grouped
together into a file system. File system metadata can be kept
on a separate set of disks, which may be useful for streaming
applications where long disk seeks cannot be tolerated. Thus,
the QFS system may communicate with one or more content
search servers 268 and/or indexers 294 to identify, retrieve,
move, and/or update data stored in the network file systems
296 and/or other storage systems.

In some implementations, one or more query servers 272
may communicate with the NFS 296 to retrieve and/or update
information stored outside of the pod 244. The NFS 296 may
allow servers located in the pod 244 to access information to
access files over a network in a manner similar to how local
storage is accessed.

In some implementations, queries from the query servers
222 may be transmitted to the NFS 296 via the load balancer
220, which may distribute resource requests over various
resources available in the on-demand service environment.
The NFS 296 may also communicate with the QFS 292 to
update the information stored on the NFS 296 and/or to pro-
vide information to the QFS 292 for use by servers located
within the pod 244.

In some implementations, the pod may include one or more
database instances 290. The database instance 290 may trans-
mit information to the QFS 292. When information is trans-
mitted to the QFS, it may be available for use by servers
within the pod 244 without requiring an additional database
call.

In some implementations, database information may be
transmitted to the indexer 294. Indexer 294 may provide an
index of information available in the database 290 and/or
QFS 292. The index information may be provided to file force
servers 276 and/or the QFS 292.

III. Tracking Updates to a Record Stored in a Database

As multiple users might be able to change the data of a
record, it can be useful for certain users to be notified when a

US 9,411,855 B2

19

record is updated. Also, even if a user does not have authority
to change a record, the user still might want to know when
there is an update. For example, a vendor may negotiate a new
price with a salesperson of company X, where the salesperson
is a user associated with tenant X. As part of creating a new
invoice or for accounting purposes, the salesperson can
change the price saved in the database. [t may be important for
co-workers to know that the price has changed. The salesper-
son could send an e-mail to certain people, but this is onerous
and the salesperson might not e-mail all of the people who
need to know or want to know. Accordingly, implementations
can inform others (e.g. co-workers) who want to know about
an update to a record automatically.

FIG. 3 is a flowchart of a method 300 for tracking updates
to a record stored in a database system according to imple-
mentations. In some implementations, method 300 (and other
methods described herein) may be implemented at least par-
tially with multi-tenant database system 16, e.g., by one or
more processors configured to receive or retrieve informa-
tion, process the information, store results, and the transmit
the results. In other implementations, method 300 may be
implemented at least partially with a single tenant database
system. In various implementations, steps may be omitted,
combined, or split into additional steps for method 300, as
well as for other methods described herein.

In step 310, the database system receives a request to
update a first record. In one implementation, the request is
received from a first user. For example, a user may be access-
ing a page associated with the first record, and may change a
displayed field and hit save. In another implementation, the
database system can automatically create the request. For
instance, the database system can create the request in
response to another event, e.g., a request to change a field
could be sent periodically at a particular date and/or time of
day, or a change to another field or object. The database
system can obtain a new value based on other fields of a
record and/or based on parameters in the system.

The request for the update of a field of a record is an
example of an event associated with the first record for which
a feed tracked update may be created. In other implementa-
tions, the database system can identify other events besides
updates to fields of a record. For example, an event can be a
submission of approval to change a field. Such an event can
also have an associated field (e.g., a field showing a status of
whether a change has been submitted). Other examples of
events can include creation of a record, deletion of a record,
converting a record from one type to another (e.g. converting
a lead to an opportunity), closing a record (e.g. a case type
record), and potentially any state change of a record—any of
which could include a field change associated with the state
change. Any of these events update the record whether by
changing a field of the record, a state of the record, or some
other characteristic or property of the record. In one imple-
mentation, a list of supported events for creating a feed
tracked update can be maintained within the database system,
e.g., at a server or in a database.

In step 320, the database system writes new data to the first
record. In one implementation, the new data may include a
new value that replaces old data. For example, a field is
updated with a new value. In another implementation, the new
data can be a value for a field that did not contain data before.
In yet another implementation, the new data could be a flag,
e.g., for a status of the record, which can be stored as a field of
the record.

In some implementations, a “field” can also include
records that are child objects of the first record. A child object
itself can include further fields. Thus, if a field of a child

10

15

20

25

30

35

40

45

50

55

60

65

20

object is updated with a new value, the parent record also can
be considered to have a field changed. In one example, a field
could be a list of related child objects, also called a related list.

In step 330, a feed tracked update is generated about the
update to the record. In one implementation, the feed tracked
update is created in parts for assembling later into a display
version. For example, event entries can be created and tracked
in one table, and changed field entries can be tracked in
another table that is cross-referenced with the first table. More
specifics of such implementations are provided later, e.g.,
with respect to FIG. 9A. In another implementation, the feed
tracked update is automatically generated by the database
system. The feed tracked update can convey in words that the
first record has been updated and provide details about what
was updated in the record and who performed the update. In
some implementations, a feed tracked update is generated for
only certain types of event and/or updates associated with the
first record.

In one implementation, a tenant (e.g. through an adminis-
trator) can configure the database system to create (enable)
feed tracked updates only for certain types of records. For
example, an administrator can specify that records of type
Account and Opportunity are enabled. When an update (or
other event) is received for the enabled record type, then a
feed tracked update would be generated. In another imple-
mentation, a tenant can also specify the fields of a record
whose changes are to be tracked, and for which feed tracked
updates are created. In one aspect, a maximum number of
fields can be specified for tracking, and may include custom
fields. In one implementation, the type of change can also be
specified, for example, that the value change of a field is
required to be larger than a threshold (e.g. an absolute amount
or a percentage change). In yet another implementation, a
tenant can specify which events are to cause a generation of a
feed tracked update. Also, in one implementation, individual
users can specify configurations specific to them, which can
create custom feeds as described in more detail below.

In one implementation, changes to fields of a child object
are not tracked to create feed tracked updates for the parent
record. In another implementation, the changes to fields of a
child object can be tracked to create feed tracked updates for
the parent record. For example, a child object of the parent
type can be specified for tracking, and certain fields of the
child object can be specified for tracking. As another
example, if the child object is of a type specified for tracking,
then a tracked change for the child object is propagated to
parent records of the child object.

In step 340, the feed tracked update is added to a feed for
the first record. In one implementation, adding the feed
tracked update to a feed can include adding events to a table
(which may be specific to a record or be for all or a group of
objects), where a display version of a feed tracked update can
be performed dynamically when a user requests a feed for the
first record. In another implementation, a display version of a
feed tracked update can be added when a record feed is stored
and maintained for a record. As mentioned above, a feed may
be maintained for only certain records. In one implementa-
tion, the feed of a record can be stored in the database asso-
ciated with the feed. For example, the feed can be stored as a
field (e.g. as a child object) of the record. Such a field can store
a pointer to the text to be displayed for the feed tracked
update.

In some implementations, only the current feed tracked
update (or other current feed item) may be kept or temporarily
stored, e.g., in some temporary memory structure. For
example, a feed tracked update for only a most recent change
to any particular field is kept. In other implementations, many

US 9,411,855 B2

21

previous feed tracked updates may be kept in the feed. A time
and/or date for each feed tracked update can be tracked.
Herein, a feed of a record is also referred to as an entity feed,
as a record is an instance of a particular entity object of the
database.

In step 350, followers of the first record can be identified. A
follower is a user following (subscribing to a feed of) the first
record. In one implementation, when a user requests a feed of
aparticular record such an identification need not be done. In
another implementation where a record feed is pushed to a
user (e.g. as part of a news feed), then the user can be identi-
fied as a follower of the first record. Accordingly, this step can
be the identification of records and other objects being fol-
lowed by a particular user.

In one implementation, the database system can store a list
of'the followers for a particular record. In various implemen-
tations, the list can be stored with the first record or associated
with the record using an identifier (e.g. a pointer) to retrieve
the list. For example, the list can be stored in a field of the first
record. In another implementation, a list of the records that a
user is following is used. In one implementation, the database
system can have a routine that runs for each user, where the
routine polls the records in the list to determine if a new feed
tracked update has been added to a feed of the record. In
another implementation, the routine for the user can be run-
ning at least partially on a user device, which contacts the
database to perform the polling.

In step 360, in one implementation, the feed tracked update
can be stored in a table, as described in greater detail below.
When the user opens a feed, an appropriate query is sent to
one or more tables to retrieve updates to records, also
described in greater detail below. In some implementations,
the feed shows feed tracked updates in reverse chronological
order. In one implementation, the feed tracked update is
pushed to the feed of a user, e.g., by a routine that determines
the followers for the record from a list associated with the
record. In another implementation, the feed tracked update is
pulled to a feed, e.g., by auser device. This pulling may occur
when a user requests the feed, as occurs in step 370. Thus,
these actions may occur in a different order. The creation of
the feed for a pull may be a dynamic creation that identifies
records being followed by the requesting user, generates the
display version of relevant feed tracked updates from stored
information (e.g. event and field change), and adds the feed
tracked updates into the feed. A feed of feed tracked updates
of records and other objects that a user is following is also
called a news feed.

In yet another implementation, the feed tracked update
could be sent as an e-mail to the follower, instead of in a feed.
In one implementation, e-mail alerts for events can enable
people to be e-mailed when certain events occur. In another
implementation, e-mails can be sent when there are posts on
a user profile and posts on entities to which the user sub-
scribes. In one implementation, a user can turn on/off email
alerts for all or some events. In an implementation, a user can
specify what kind of feed tracked updates to receive about a
record that the user is following. For example, a user can
choose to only receive feed tracked updates about certain
fields of a record that the user is following, and potentially
about what kind of update was performed (e.g. a new value
input into a specified field, or the creation of a new field).

In step 370, a follower can access his/her news feed to see
the feed tracked update. In one implementation, the user has
just one news feed for all of the records that the user is
following. In one aspect, a user can access his/her own feed by
selecting a particular tab or other object on a page of an
interface to the database system. Once selected the feed can

20

25

40

45

55

22

be provided as a list, e.g., with an identifier (e.g. a time) or
including some or all of the text of the feed tracked update. In
another implementation, the user can specify how the feed
tracked updates are to be displayed and/or sent to the user. For
example, a user can specify a font for the text, a location of
where the feed can be selected and displayed, amount of text
to be displayed, and other text or symbols to be displayed (e.g.
importance flags).

FIG. 4 is a block diagram 400 of components of a database
system performing a method for tracking an update to a
record according to implementations. Block diagram 400 can
perform implementations of method 300, as well as imple-
mentations of other method described herein.

A first user 405 sends a request 1 to update record 425 in
database system 416. Although an update request is
described, other events that are being tracked are equally
applicable. In various implementations, the request 1 can be
sent via a user interface (e.g. 30 of FIG. 1B) or an application
program interface (e.g. API 32). An I/O port 420 can accom-
modate the signals of request 1 via any input interface, and
send the signals to one or more processors 417. The processor
417 can analyze the request and determine actions to be
performed. Herein, any reference to a processor 417 can refer
to a specific processor or any set of processors in database
system 416, which can be collectively referred to as processor
417.

Processor 417 can determine an identifier for record 425,
and send commands 2 with the new data to record database
412 to update record 425. In one implementation, record
database 412 is where tenant data 112 is stored. The request 1
and new data commands 2 can be encapsulated in a single
write transaction sent to record database 412. In one imple-
mentation, multiple changes to records in the database can be
made in a single write transaction.

Processor 417 can also analyze request 1 to determine
whether a feed tracked update is to be created, which at this
point may include determining whether the event (e.g. a
change to a particular field) is to be tracked. This determina-
tion can be based on an interaction (i.e. an exchange of data)
with record database 412 and/or other databases, or based on
information stored locally (e.g. in cache or RAM) at proces-
sor 417. In one implementation, a list of record types that are
being tracked can be stored. The list may be different for each
tenant, e.g. as each tenant may configure the database system
to their own specifications. Thus, if the record 425 is of a type
not being tracked, then the determination of whether to create
a feed tracked update can stop there.

The same list or a second list (which can be stored in a same
location or a different location) can also include the fields
and/or events that are tracked for the record types in the first
list. This list can be searched to determine if the event is being
tracked. A list may also contain information having the granu-
larity of listing specific records that are to be tracked (e.g. if a
tenant can specify the particular records to be tracked, as
opposed to just type).

As an example, processor 417 may obtain an identifier
associated with record 425 (e.g. obtained from request 1 or
database 412), potentially along with a tenant identifier, and
cross-reference the identifier with a list of records for which
feed tracked updates are to be created. Specifically, the record
identifier can be used to determine the record type and a list of
tracked types can be searched for a match. The specific record
may also be checked if such individual record tracking was
enabled. The name of the field to be changed can also be used
to search a list of tracking-enabled fields. Other criteria
besides field and events can be used to determine whether a
feed tracked update is created, e.g., type of change in the field.

US 9,411,855 B2

23

If a feed tracked update is to be generated, processor 417 can
then generate the feed tracked update.

In some implementations, a feed tracked update is created
dynamically when a feed (e.g. the entity feed of record 425) is
requested. Thus, in one implementation, a feed tracked
update can be created when a user requests the entity feed for
record 425. In this implementation, the feed tracked update
may be created (e.g. assembled), including re-created, each
time the entity feed is to be displayed to any user. In one
implementation, one or more hifeed tracked update tables can
keep track of previous events so that the feed tracked update
can be re-created.

In another implementation, a feed tracked update can be
created at the time the event occurs, and the feed tracked
update can be added to a list of feed items. The list of feed
items may be specific to record 425, or may be an aggregate
of feed items including feed items for many records. Such an
aggregate list can include a record identifier so that the feed
items for the entity feed of record 425 can be easily retrieved.
For example, after the feed tracked update has been gener-
ated, processor 417 can add the new feed tracked update 3 to
a feed of record 425. As mentioned above, in one implemen-
tation, the feed can be stored in a field (e.g. as a child object)
of record 425. In another implementation, the feed can be
stored in another location or in another database, but with a
link (e.g. a connecting identifier) to record 425. The feed can
be organized in various ways, e.g., as a linked list, an array, or
other data structure.

A second user 430 can access the new feed tracked update
3 in various ways. In one implementation, second user 430
can send a request 4 for the record feed. For example, second
user 430 can access a home page (detail page) of the record
425 (e.g. with a query or by browsing), and the feed can be
obtained through a tab, button, or other activation object on
the page. The feed can be displayed on the screen or down-
loaded.

In another implementation, processor 417 can add the new
feed tracked update in a step 5 to a feed (e.g. a news feed) of
a user that is following record 425. In one implementation,
processor 417 can determine each of the followers of record
425 by accessing a list of the users that have been registered
as followers. This determination can be done for each new
event (e.g. update 1). In another implementation, processor
417 can poll (e.g. with a query) the records that second user
430 is following to determine when new feed tracked updates
(or other feed items) are available. Processor 417 can use a
follower profile 435 of second user 430, which can contain a
list of the records that the second user 430 is following. Such
a list can be contained in other parts of the database as well.
Second user 430 can then send a request 6 to his/her profile
435 to obtain a feed, which contains the new feed tracked
update. The user’s profile 435 can be stored in a profile
database 414, which can be the same or different than data-
base 412.

In some implementations, a user can define a news feed to
include new feed tracked updates from various records, which
may be limited to a maximum number. In one implementa-
tion, each user has one news feed. In another implementation,
the follower profile 435 can include the specifications of each
of the records to be followed (with the criteria for what feed
tracked updates are to be provided and how they are dis-
played), as well as the feed.

Some implementations can provide various types of record
(entity) feeds. Entity Feeds can exist for records like Account,
Opportunity, Case, and Contact. An entity feed can tell a user
about the actions that people have taken on that particular
record or on one its related records. The entity feed can

25

35

40

45

55

24

include who made the action, which field was changed, and
the old and new values. In one implementation, entity feeds
can exist on all supported records as a list that is linked to the
specific record. For example, a feed could be stored in a field
that allows lists (e.g. linked lists) or as a child object.

IV. Tracking Actions of a User

In addition to knowing about events associated with a
particular record, it can be helpful for a user to know what a
particular user is doing. In particular, it might be nice to know
what the user is doing without the user having to generate the
feed tracked update (e.g. a user submitting a synopsis of what
the user has done). Accordingly, implementations can auto-
matically track actions of a user that trigger events, and feed
tracked updates can be generated for certain events.

FIG. 5 is a flowchart of a method 500 for tracking actions
of'a user of a database system according to implementations.
Method 500 may be performed in addition to method 300.
The methods of implementing method 300, including order of
steps, can also be applied to method 500 and other methods
described herein. Thus, a feed can be composed of changes to
a record and actions of users.

In step 510, a database system (e.g. 16) identifies an action
of a first user. In one implementation, the action triggers an
event, and the event is identified. For example, the action of a
user requesting an update to a record can be identified, where
the event is receiving a request or is the resulting update of a
record. The action may thus be defined by the resulting event.
In another implementation, only certain types of actions
(events) are identified. Which actions are identified can be set
as a default or can be configurable by a tenant, or even con-
figurable at a user level. In this way, processing effort can be
reduced since only some actions are identified.

In step 520, it is determined whether the event qualifies for
a feed tracked update. In one implementation, a predefined
list of events (e.g. as mentioned herein) can be created so that
only certain actions are identified. In one implementation, an
administrator (or other user) of a tenant can specify the type of
actions (events) for which a feed tracked update is to be
generated. This step may also be performed for method 300.

In step 530, a feed tracked update is generated about the
action. In an example where the action is an update of a
record, the feed tracked update can be similar or the same as
the feed tracked update created for the record. The description
can be altered though to focus on the user as opposed to the
record. For example, “John D. has closed a new opportunity
for account XYZ” as opposed to “an opportunity has been
closed for account XYZ.’

In step 540, the feed tracked update is added to a profile
feed of the first user when, e.g., the user clicks on a tab to open
a page in a browser program displaying the feed. In one
implementation, a feed for a particular user can be accessed
on a page of the user’s profile, in a similar manner as a record
feed can be accessed on a detail page of the record. In another
implementation, the first user may not have a profile feed and
the feed tracked update may just be stored temporarily before
proceeding. A profile feed of a user can be stored associated
with the user’s profile. This profile feed can be added to a
news feed of another user.

In step 550, followers of the first user are identified. In one
implementation, a user can specify which type of actions
other users can follow. Similarly, in one implementation, a
follower can select what actions by a user the follower wants
to follow. In an implementation where different followers
follow different types of actions, which users are followers of
that user and the particular action can be identified, e.g., using
various lists that track what actions and criteria are being
followed by a particular user. In various implementations, the

US 9,411,855 B2

25

followers of'the first user can be identified in a similar manner
as followers of a record, as described above for step 350.

In step 560, the feed tracked update is added to a news feed
of'each follower of the firstuser when, e.g., the follower clicks
on a tab to open a page displaying the news feed. The feed
tracked update can be added in a similar manner as the feed
items for a record feed. The news feed can contain feed
tracked updates both about users and records. In another
implementation, a user can specify what kind of feed tracked
updates to receive about a user that the user is following. For
example, a user could specify feed tracked updates with par-
ticular keywords, of certain types of records, of records
owned or created by certain users, particular fields, and other
criteria as mentioned herein.

In step 570, a follower accesses the news feed and sees the
feed tracked update. In one implementation, the user has just
one news feed for all of the records that the user is following.
Inanother implementation, a user can access his/her own feed
(i.e. feed about his/her own actions) by selecting a particular
tab or other object on a page of an interface to the database
system. Thus, a feed can include feed tracked updates about
what other users are doing in the database system. When a
user becomes aware of a relevant action of another user, the
user can contact the co-worker, thereby fostering teamwork.

V. Generation of a Feed Tracked Update

As described above, some implementations can generate
text describing events (e.g. updates) that have occurred for a
record and actions by a user that trigger an event. A database
system can be configured to generate the feed tracked updates
for various events in various ways.

A. Which Events to Generate a Feed Tracked Update

In a database system, there are various events that can be
detected. However, the operator of the database system and/or
a tenant may not want to detect every possible event as this
could be costly with regards to performance. Accordingly, the
operator and/or the tenant can configure the database system
to only detect certain events. For example, an update of a
record may be an event that is to be detected.

Out of the events that are detected, a tenant (including a
specific user of the tenant) may not want a feed tracked update
about each detected event. For example, all updates to a
record may be identified at a first level. Then, based on speci-
fications of an administrator and/or a specific user of a tenant,
another level of inquiry can be made as to whether a feed
tracked update is to be generated about the detected event. For
example, the events that qualify for a feed tracked update can
be restricted to changes for only certain fields of the record,
which can differ depending on which user is receiving the
feed. In one implementation, a database system can track
whether an event qualifies for a feed tracked update for any
user, and once the feed tracked update is generated, it can be
determined who is to receive the feed tracked update.

Supported events (events for which a feed tracked update is
generated) can include actions for standard fields, custom
fields, and standard related lists. Regarding standard fields,
for the entity feed and the profile feed, a standard field update
can trigger a feed tracked update to be published to that feed.
In one implementation, which standard field can create a feed
tracked update can be set by an administrator to be the same
for every user. In another implementation, a user can set
which standard fields create a feed tracked update for that
user’s news feed. Custom fields can be treated the same or
differently than standard fields.

The generation of a feed item can also depend on a rela-
tionship of an object to other objects (e.g. parent-child rela-
tionships). For example, if a child object is updated, a feed
tracked update may be written to a feed of a parent of the child

10

15

20

25

30

35

40

45

50

55

60

65

26

object. The level of relationship can be configured, e.g., only
1 level of separation (i.e. no grandparent-grandchild relation-
ship). Also, in one implementation, a feed tracked update is
generated only for objects above the objects being updated,
i.e., a feed tracked update is not written for a child when the
parent is updated.

In some implementations, for related lists of a record, a
feed tracked update is written to its parent record (1 level
only) when the related list item is added, and not when the list
item is changed or deleted. For example: user A added a new
opportunity XYZ for account ABC. In this manner, entity
feeds can be controlled so as not to be cluttered with feed
tracked updates about changes to their related items. Any
changes to the related list item can be tracked on their own
entity feed, if that related list item has a feed on it. In this
implementation, if a user wants to see a feed of the related list
item then the user can subscribe to it. Such a subscription
might be when a user cares about a specific opportunity
related to a specific account. A user can also browse to that
object’s entity feed. Other implementations can create a feed
tracked update when a related entity is changed or deleted.

In one implementation, an administrator (of the system or
of'a specific tenant) can define which events of which related
objects are to have feed tracked updates written about them in
a parent record. In another implementation, a user can define
which related object events to show. In one implementation,
there are two types of related lists of related objects: first class
lookup and second class lookup. Each of the records in the
related lists can have a different rule for whether a feed
tracked update is generated for a parent record. Each of these
related lists can be composed as custom related lists. In vari-
ous implementations, a custom related list can be composed
of custom objects, the lists can contain a variety of records or
items (e.g. not restricted to a particular type of record or item),
and can be displayed in a customized manner.

Inone implementation, a first class lookup contains records
of a child record that can exist by itself. For example, the
contacts on an account exist as a separate record and also as a
child record of the account. In another implementation, a
record in a first class lookup can have its own feed, which can
be displayed on its detail page.

In one implementation, a second class lookup can have line
items existing only in the context of their parent record (e.g.
activities on an opportunity, contact roles on opportunity/
contact). In one implementation, the line items are not objects
themselves, and thus there is no detail page, and no place to
put a feed. In another implementation, a change in a second
class lookup can be reported on the feed of the parent.

Some implementations can also create feed tracked
updates for dependent field changes. A dependent field
change is a field that changes value when another field
changes, and thus the field has a value that is dependent on the
value of the other field. For example, a dependent field might
be a sum (or other formula) that totals values in other fields,
and thus the dependent field would change when one of the
fields being summed changes. Accordingly, in one implemen-
tation, a change in one field could create feed tracked updates
for multiple fields. In other implementations, feed tracked
updates are not created for dependent fields.

B. How the Feed Tracked Update is Generated

After it is determined that a feed tracked update is going to
be generated, some implementations can also determine how
the feed tracked update is generated. In one implementation,
different methods can be used for different events, e.g., in a
similar fashion as for the configurability of which events feed

US 9,411,855 B2

27

tracked updates are generated. A feed tracked update can also
include a description of multiple events (e.g. john changed the
account status and amount).

In one implementation, the feed tracked update is a gram-
matical sentence, thereby being easily understandable by a
person. In another implementation, the feed tracked update
provides detailed information about the update. In various
examples, an old value and new value for a field may be
included in the feed tracked update, an action for the update
may be provided (e.g. submitted for approval), and the names
of particular users that are responsible for replying or acting
on the feed tracked update may be also provided. The feed
tracked update can also have a level of importance based on
settings chosen by the administrator, a particular user request-
ing an update, or by a following user who is to receive the feed
tracked update, which fields is updated, a percentage of the
change in a field, the type of event, or any combination of
these factors.

The system may have a set of heuristics for creating a feed
tracked update from the event (e.g. a request to update). For
example, the subject may be the user, the record, or a field
being added or changed. The verb can be based on the action
requested by the user, which can be selected from a list of
verbs (which may be provided as defaults or input by an
administrator of a tenant). In one implementation, feed
tracked updates can be generic containers with formatting
restrictions,

As an example of a creation of a new record, “Mark
Abramowitz created a new Opportunity IBM-20,000 laptops
with Amount as $3.5M and Sam Palmisano as Decision
Maker.” This event can be posted to the profile feed for Mark
Abramowitz and the entity feed for record of Opportunity for
IBM-20,000 laptops. The pattern can be given by (Agent-
FullName) created a new (ObjectName)(RecordName) with
[(FieldName) as (FieldValue) [,/and]]|*[[added/changed/re-
moved] (RelatedListRecordName) [as/to/as] (RelatedLis-
tRecordValue) [,/and]]*. Similar patterns can be formed for a
changed field (standard or custom) and an added child record
to a related list.

V1. Tracking Commentary from or about a User

Some implementations can also have a user submit text,
instead of the database system generating a feed tracked
update. As the text is submitted by users, the text (also
referred generally as messages) can be about any topic. Thus,
more information than just actions of a user and events of a
record can be conveyed. In one implementation, the messages
can be used to ask a question about a particular record, and
users following the record can provide responses (com-
ments).

FIG. 6 is a flowchart of a method 600 for creating a news
feed that includes messages associated with a first user
according to implementations. In one implementation,
method 600 can be combined with methods 300 and 500. In
one aspect, a message can be associated with the first user
when the first user creates the message (e.g. a post or com-
ment about a record or another user). In another aspect, a
message can be associated with the first user when the mes-
sage is about the first user (e.g. posted by another user on the
first user’s profile feed).

In step 610, database system receives a message (e.g. a post
or status) associated with a first user. The message (e.g. a post
or status update) can contain text submitted by another user or
by the first user. In one implementation, a post is for a section
of the first user’s profile where any user can add a post, and
where multiple posts can exist. Thus, a post can appear on the
first user’s profile and can be viewed when the first user’s
profile is visited. For a message about a record, the post can

10

15

20

25

30

35

40

45

50

55

60

65

28

appear on a detail page of a record. Note the message can
appear in other feeds as well. In another implementation, a
status update about the first user can only be added by the first
user. In one implementation, a user can only have one status
message.

In step 620, the message is added to a table, as described in
greater detail below. When the feed is opened, a query filters
one or more tables to identify the first user, identify other
persons that the user is following, and retrieve the message.
Messages and record updates are presented in a combined list
as the feed. In this way, in one implementation, the message
can be added to a profile feed of the first user, which is
associated (e.g. as a related list) with the first user’s profile. In
one implementation, the posts are listed indefinitely. In
another implementation, only the most recent posts (e.g. last
50) are kept in the profile feed. Such implementations can
also be employed with feed tracked updates. In yet another
implementation, the message can be added to a profile of the
user adding the message.

In step 630, database system identifies followers of the first
user. In one implementation, the database system can identify
the followers as described above for method 500. In various
implementations, a follower can select to follow a feed about
the actions of the first user, messages about the first user, or
both (potentially in a same feed).

In step 640, the message is added to a news feed of each
follower. In one implementation, the message is only added to
a news feed of a particular follower if the message matches
some criteria, e.g., the message includes a particular keyword
orother criteria. In another implementation, a message can be
deleted by the user who created the message. In one imple-
mentation, once deleted by the author, the message is deleted
from all feeds to which the message had been added.

In step 650, the follower accesses a news feed and sees the
message. For example, the follower can access a news feed on
the user’s own profile page. As another example, the follower
can have a news feed sent to his’her own desktop without
having to first go to a home page.

In step 660, database system receives a comment about the
message. The database system can add the comment to a feed
of the same first user, much as the original message was
added. In one implementation, the comment can also be
added to a feed of the user adding the comment. In one
implementation, users can also reply to the comment. In
another implementation, users can add comments to a feed
tracked update, and further comments can be associated with
the feed tracked update. In yet another implementation, mak-
ing a comment or message is not an action to which a feed
tracked update is created. Thus, the message may be the only
feed item created from such an action.

In one implementation, if a feed tracked update (or post) is
deleted, its corresponding comments are deleted as well. In
another implementation, new comments on a feed tracked
update (or post) do not update the feed tracked update times-
tamp. Also, the feed tracked update or post can continue to be
shown in a feed (profile feed, record feed, or news feed) if it
has had a comment within a specified timeframe (e.g. within
the last week). Otherwise, the feed tracked update (post) can
be removed in an implementation.

In some implementations, all or most feed tracked updates
can be commented on. In other implementations, feed tracked
updates for certain records (e.g. cases or ideas) are not com-
mentable. In various implementations, comments can be
made for any one or more records of opportunities, accounts,
contacts, leads, and custom objects.

In step 670, the comment is added to a news feed of each
follower. In one implementation, a user can make the com-

US 9,411,855 B2

29

ment within the user’s news feed. Such a comment can propa-
gate to the appropriate profile feed or record feed, and then to
the news feeds of the following users. Thus, feeds can include
what people are saying, as well as what they are doing. In one
aspect, feeds are a way to stay up-to-date (e.g. on users,
opportunities, etc.) as well as an opportunity to reach out to
your co workers/partners and engage them around common
goals.

In some implementations, users can rate feed tracked
updates or messages (including comments). A user can
choose to prioritize a display of a feed so that higher rated
feed items show up higher on a display. For example, in an
implementation where comments are answers to a specific
question, users can rate the different status posts so that a best
answer can be identified. As another example, users are able
to quickly identify feed items that are most important as those
feed items can be displayed at a top of a list. The order of the
feed items can be based on an importance level (which can be
determined by the database system using various factors,
some of which are mentioned herein) and based on a rating
from users. In one implementation, the rating is on a scale that
includes at least 3 values. In another implementation, the
rating is based on a binary scale.

Besides a profile for a user, a group can also be created. In
various implementations, the group can be created based on
certain criteria that are common to the users, can be created by
inviting users, or can be created by receiving requests to join
from a user. In one implementation, a group feed can be
created, with messages being added to the group feed when
someone adds a message to the group as a whole. For
example, a group page may have a section for posts. In
another implementation, a message can be added to a group
feed when a message is added about any one of the members.
In yet another implementation, a group feed can include feed
tracked updates about actions of the group as a whole (e.g.
when an administrator changes data in a group profile or a
record owned by the group), or about actions of an individual
member.

FIG. 7 shows an example of a group feed on a group page
according to implementations. As shown, a feed item 710
shows that a user has posted a document to the group object.
The text “Bill Bauer has posted the document Competitive
Insights” can be generated by the database system in a similar
manner as feed tracked updates about a record being changed.
A feed item 720 shows a post to the group, along with com-
ments 730.

FIG. 8 shows an example of a record feed containing a feed
tracked update, post, and comments according to implemen-
tations. Feed item 810 shows a feed tracked update based on
the event of submitting a discount for approval. Other feed
items show posts that are made to the record and comments
that are made on the posts.

VII. Infrastructure for a Feed

A. Tables Used to Create a Feed

FIG. 9A shows a plurality of tables that may be used in
tracking events and creating feeds according to implementa-
tions. The tables of FIG. 9A may have entries added, or
potentially removed, as part of tracking events in the database
from which feed items are creates or that correspond to feed
items. In one implementation, each tenant has its own set of
tables that are created based on criteria provided by the tenant.

An event hifeed tracked update table 910 can provide a
hifeed tracked update of events from which feed items are
created. In one aspect, the events are for objects that are being
tracked. Thus, table 910 can store change hifeed tracked
updates for feeds, and the changes can be persisted. In various
implementations, event hifeed tracked update table 910 can

10

15

20

25

30

35

40

45

50

55

60

65

30

have columns of event ID 911, object ID 912 (also called
parent ID), and created by ID 913. The event ID 911 can
uniquely identify a particular event and can start at 1 (or other
number or value).

Each new event can be added chronologically with a new
event ID, which may be incremented in order. An object ID
912 can be used to track which record or user’s profile is being
changed. For example, the object ID can correspond to the
record whose field is being changed or the user whose feed is
receiving a post. The created by ID 913 can track the user who
is performing the action that results in the event, e.g., the user
that is changing the field or that is posting a message to the
profile of another user.

In some other implementations, event hifeed tracked
update table 910 can have one or more of the following
variables with certain attributes: ORGANIZATION_ID
being CHAR(15 BYTE), FEEDS_ENTITY_HIFEED
TRACKED UPDATE_ID being CHAR(15 BYTE), PAREN-
T_ID being CHAR(15BYTE), CREATED_BY being CHAR
(15 BYTE), CREATED_DATE being a variable of type
DATE, DIVISION being a NUMBER, KEY_PREFIX being
CHAR(3 BYTE), and DELETED being CHAR(1 BYTE).
The parent ID can provide an ID of a parent object in case the
change is promulgated to the parent. The key prefix can
provide a key that is unique to a group of records, e.g. custom
records (objects). The deleted variable can indicate that the
feed items for the event are deleted, and thus the feed items are
not generated. In one implementation, the variables for each
event entry or any entry in any of the tables may not be
nullable. In another implementation, all entries in the event
hifeed tracked update table 910 are used to create feed items
for only one object, as specified by the object ID 912. For
example, one feed tracked update cannot communicate
updates on two records, such as updates of an account field
and an opportunity field.

In one implementation, a name of an event can also be
stored in table 910. In one implementation, a tenant can
specify events that they want tracked. In an implementation,
event hifeed tracked update table 910 can include the name of
the field that changed (e.g. old and new values). In another
implementation, the name of the field, and the values, are
stored in a separate table. Other information about an event
(e.g. text of comment, feed tracked update, post or status
update) can be stored in event hifeed tracked update table 910,
or in other tables, as is now described.

A field change table 920 can provide a hifeed tracked
update of the changes to the fields. The columns of table 920
can include an event ID 921 (which correlates to the event ID
911), an old value 922 for the field, and the new value 923 for
the field. In one implementation, if an event changes more
than one field value, then there can be an entry for each field
changed. As shown, event ID 921 has two entries for event
E37.

In some other implementations, field change table 920 can
have one or more of the following variables with certain
attributes: ORGANIZATION_ID being CHAR(15 BYTE),
FEEDS_ENTITY_HIFEED TRACKED UPDATE_FIELD-
S_ID being CHAR(15 BYTE) and identifying each entry,
FEEDS_ENTITY_HIFEED TRACKED UPDATE_ID being
CHAR(15 BYTE), FIELD_KEY being VARCHAR2(120
BYTE), DATA TYPE ©being CHAR(1 BYTE),
OLDVAL_STRING VARCHAR2 being (765 BYTE),
NEWVAL_STRING being VARCHAR2(765 BYTE), OLD-
VAL_FIRST NAME being VARCHAR2(765 BYTE),
NEWVAL_FIRST_NAME being VARCHAR2(765 BYTE),
OLDVAL_LAST NAME being VARCHAR2(765 BYTE),
NEWVAL_LAST _NAME being VARCHAR2(765 BYTE),

US 9,411,855 B2

31
OLDVAL_NUMBER being NUMBER, NEWVAL_NUM-
BER being NUMBER, OLDVAL_DATE being DATE,
NEWVAL_DATE being DATE, and DELETED being
CHAR(1 BYTE). In one implementation, one or more of the
variables for each entry in any of the tables may be nullable.

In one implementation, the data type variable (and/or other
variables) is a non-api-insertable field. In another implemen-
tation, variable values can be derived from the record whose
field is being changed. Certain values can be transferred into
typed columns old/new value string, old/new value number or
old/new value date depending upon the derived values. In
another implementation, there can exist a data type for cap-
turing add/deletes for child objects. The child ID can be
tracked in the foreign-key column ofthe record. In yet another
implementation, if the field name is pointing to a field in the
parent entity, a field level security (FLS) can be used when a
user attempts to a view a relevant feed item. Herein, security
levels for objects and fields are also called access checks and
determinations of authorization. In one aspect, the access can
be for create, read, write, update, or delete of objects.

In one implementation, the field name (orkey) can be either
afield name of the entity or one of the values in a separate list.
For example, changes that do not involve the update of an
existing field (e.g. a close or open) can have a field name
specified in an enumerated list. This enumerated list can store
“special” field name sentinel values for non-update actions
that a tenant wants to track. In one aspect, the API just sur-
faces these values and the caller has to check the enumerated
values to see if it is a special field name.

A comment table 930 can provide a hifeed tracked update
of'the comments made regarding an event, e.g., a comment on
a post or a change of a field value. The columns of table 930
can include an event ID 921 (which correlates to the event ID
911), the comment column 932 that stores the text of the
comment, and the time/date 933 of the comment. In one
implementation, there can be multiple comments for each
event. As shown, event ID 921 has two entries for event E37.

In some other implementations, comment table 930 can
have one or more of the following variables with certain
attributes: ORGANIZATION_ID being CHAR(15 BYTE),
FEEDS_COMMENTS_ID being CHAR(15 BYTE) and
uniquely identifying each comment, PARENT_ID being
CHAR(15BYTE), CREATED_BY being CHAR(15BYTE),
CREATED_DATE being DATE, COMMENTS being VAR-
CHAR2(420 BYTE), and DELETED being CHAR(1
BYTE).

A user subscription table 940 can provide a list of the
objects being followed (subscribed to) by a user. In one imple-
mentation, each entry has a user ID 941 of the user doing the
following and one object ID 942 corresponding to the object
being followed. In one implementation, the object being fol-
lowed can be a record or a user. As shown, the user with 1D
U819 is following object IDs 0615 and 0489. [fuser U819 is
following other objects, then additional entries may exist for
user U819. Also as shown, user U719 is also following object
0615. The user subscription table 940 can be updated when a
user adds or deletes an object that is being followed.

In some other implementations, comment table 940 can be
composed of two tables (one for records being followed and
one for users being followed). One table can have one or more
of the following variables with certain attributes: ORGANI-
ZATION_ID being CHAR(15 BYTE), ENTITY_SUB-
SCRIPTION_ID being CHAR(15 BYTE), PARENT_ID
being CHAR(15 BYTE), CREATED_BY being CHAR(15
BYTE), CREATED_DATE being DATE, and DELETED
being CHAR(1 BYTE). Another table can have one or more
of the following variables with certain attributes: ORGANI-

10

15

20

25

30

35

40

45

50

55

60

65

32
ZATION_ID being CHAR(15 BYTE), USER_SUBSCRIP-
TIONS_ID being CHAR(15 BYTE), USER_ID being
CHAR(15BYTE), CREATED_BY being CHAR(15BYTE),
and CREATED_DATE being DATE.

In one implementation, regarding a profile feed and a news
feed, these are read-only views on the event hifeed tracked
update table 910 specialized for these feed types. Conceptu-
ally the news feed can be a semi-join between the entity
subscriptions table 940 and the event hifeed tracked update
table 910 on the object IDs 912 and 942 for the user. In one
aspect, these entities can have polymorphic parents and can
be subject to a number of restrictions detailed herein, e.g., to
limit the cost of sharing checks.

In one implementation, entity feeds are modeled in the API
as a feed associate entity (e.g. AccountFeed, CaseFeed etc). A
feed associate entity includes information composed of
events (e.g. event IDs) for only one particular record type.
Such a list can limit the query (and sharing checks) to a
specific record type. In one aspect, this structuring of the
entity feeds can make the query run faster. For example, a
request for a feed of a particular account can include the
record type of account. In one implementation, an account
feed table can then be searched, where the table has account
record IDs and corresponding event IDs or pointers to par-
ticular event entries in event hifeed tracked update table 910.
Since the account feed table only contains some of the records
(not all), the query can run faster.

Inone implementation, there may be objects with no events
listed in the event hifeed tracked update table 910, even
though the record is being tracked. In this case, the database
service can return a result indicating that no feed items exist.

In another implementation, tables can also exist for audit
tracking, e.g., to examine that operations of the system (e.g.
access checks) are performing accurately. In one implemen-
tation, audit change-hifeed tracked update tables can be per-
sisted (e.g. in bulk) synchronously in the same transaction as
feed events are added to event hifeed tracked update table
910. In another implementation, entries to the two sets of
table can be persisted in asynchronous manner (e.g. by fork-
ing a bulk update into a separate java thread). In one aspect,
some updates to any of the tables can get lost if the instance of
the table goes down while the update has not yet finished. This
asynchronous manner can limit an impact performance on
save operations. In some implementations, a field “persis-
tence type” (tri state: AUDIT, FEEDS or BOTH) can be added
to capture user preferences, as opposed to being hardcoded.

B. Feed Item

A feed item can represent an individual field change of a
record, creation and deletion of a record, or other events being
tracked for a record or a user. In one implementation, all of the
feed items in a single transaction (event) can be grouped
together and have the same event ID. A single transaction
relates to the operations that can be performed in a single
communication with the database. In another implementation
where a feed is an object of the database, a feed item can be a
child of a profile feed, news feed, or entity feed. If a feed item
is added to multiple feeds, the feed item can be replicated as
a child of each feed to which the feed item is added.

In one implementation, a feed item is visible only when its
parent feed is visible, which can be the same as needing read
access onthe feed’s parent (which can be by the type of record
or by a specific record). The feed item’s field may be only
visible when allowed under field-level security (FLS). Unfor-
tunately, this can mean that the parent feed may be visible, but
the child may not be because of FLS. Such access rules are
described in more detail below. In one implementation, a feed

US 9,411,855 B2

33

item can be read-only. In this implementation, after being
created, the feed item cannot be changed.

In multi-currency organizations, a feed item can have an
extra currency code field. This field can give the currency
code for the currency value in this field. In one aspect, the
value is undefined when the data type is anything other than
currency.

C. Feed Comment

In some implementations, a comment exists as an item that
depends from feed tracked updates, posts, status updates, and
other items that are independent of each other. Thus, a feed
comment object can exist as a child object of a feed item
object. For example, comment table 930 can be considered a
child table of event hifeed tracked update table 910. In one
implementation, a feed comment can be a child of a profile
feed, news feed, or entity feed that is separate from other feed
items.

In various implementations, a feed comment can have vari-
ous permissions for the following actions. For read permis-
sion, a feed comment can be visible if the parent feed is
visible. For create permission, if a user has access to the feed
(which can be tracked by the ID of the parent feed), the user
can add a comment. For delete, only a user with modify all
data permission or a user who added the comment can delete
the comment. Also delete permission can require access on
the parent feed. An update of a comment can be restricted, and
thus not be allowed. In one implementation, regarding a query
restriction, a feed comment cannot be queried directly, but
can be queried only via the parent feed. An example is “select
id, parentid, (select . . . from feedcomment) from entityfeed”.
In another implementation, a feed comment can be directly
queries, e.g., by querying comment table 930. A query could
include the text of a comment or any other column of the
table.

In another implementation, regarding soft delete behavior,
a feed comment table does not have a soft delete column. A
soft delete allows an undelete action. In one implementation,
a record can have a soft delete. Thus, when the record is
deleted, the feed (and its children) can be soft deleted. There-
fore, in one aspect, a feed comment cannot be retrieved via the
“query” verb (which would retrieve only the comment), but
can be retrieved via “queryAll” verb though. An example is
queryAll(“select id, (select id, commentbody from feedcom-
ments) from accountfeed where
parentid="001x000xxx3MkADAAO0”); I where
‘001x000xxx3MkADAAOQ’ has been soft deleted. When a
hard delete (a physical delete) happens, the comment can be
hard deleted from the database.

In one implementation, regarding an implicit delete, feeds
with comments are not deleted by a reaper (a routine that
performs deletion). In another implementation, a user cannot
delete a feed. In yet another implementation, upon lead con-
vert (e.g. to an opportunity or contact), the feed items of the
lead can be hard deleted. This implementation can be config-
ured to perform such a deletion for any change in record type.
In various implementations, only the comments are hard
deleted upon a lead convert, other convert, or when the object
is deleted (as mentioned above).

In one implementation, viewing a feed pulls up the most
recent messages or feed tracked updates (e.g. 25) and
searches the most recent (e.g. 4) comments for each feed item.
The comments can be identified via the comment table 930. In
one implementation, a user can request to see more com-
ments, e.g., by selecting a see more link.

In some implementations, user feeds and/or entity feeds
have a last comment date field. In various implementations,
the last comment date field is stored as a field of arecord or a

10

15

20

25

30

35

40

45

50

55

60

65

34

user profile. For feeds with no comments, this can be the same
as the created date. Whenever a new comment is created, the
associated feed’s last comment date can be updated with the
created date of the comment. The last comment date is
unchanged ifa feed comment is deleted. A use caseis to allow
people to order their queries to see the feeds which have been
most recently commented on.

D. Creating Custom Feeds by Customizing the Event
Hifeed Tracked Update Table

In some implementations, a tenant (e.g. through an admin-
istrator) or a specific user of a tenant can specify the types of
events for which feed items are created. A user can add more
events or remove events from a list of events that get added to
the event hifeed tracked update table 910. In one implemen-
tation, a trigger can be added as a piece of code, rule, or item
on a list for adding a custom event to the event hifeed tracked
update table 910. These custom events can provide customers
the ability to create their own custom feeds and custom feed
items to augment or replace implicitly generated feeds via
event hifeed tracked update table 910. Implicitly generated
feed data can be created when feed-tracking is enabled for
certain entities/field-names. In one implementation, in order
to override implicit feeds, feed tracking can be turned off and
then triggers can be defined by the user to add events to the
event hifeed tracked update table 910. In other implementa-
tions, users are not allowed to override the default list of
events that are added to table 910, and thus cannot define their
own triggers for having events tracked.

For example, upon lead convert or case close, a default
action to be taken by the system may be to add multiple events
to event hifeed tracked update table 910. If a customer (e.g. a
tenant or a specific user) does not want each of these events to
show up as feed items, the customer can turn off tracking for
the entities and generate custom feeds by defining customized
triggers (e.g. by using an API) upon the events. As another
example, although data is not changed, a customer may still
want to track an action on a record (e.g. status changes if not
already being tracked, views by certain people, retrieval of
data, etc.).

In one implementation, if a user does not want a feed item
to be generated upon every change on a given field, but only
if the change exceeds a certain threshold or range, then such
custom feeds can be conditionally generated with the custom-
ized triggers. In one implementation, the default tracking for
the record or user may be turned off for this customization so
that the events are only conditionally tracked. In another
implementation, a trigger can be defined that deletes events
that are not desired, so that default tracking can still be turned
on for a particular object type. Such conditional tracking can
be used for other events as well.

In some implementations, defining triggers to track certain
events can be done as follows. A user can define an object type
to track. This object type can be added to a list of objects that
can be tracked for a particular tenant. The tenant can remove
object types from this list as well. Custom objects and stan-
dard objects can be on the list, which may, for example, be
stored in cache or RAM of a server or in the database. Gen-
erally only one such list exists for a tenant, and users do not
have individual lists for themselves, although in some imple-
mentations, they may particularly when the number of users
in a tenant is small.

Inoneimplementation, a tenant can select which records of
an object type are to be tracked. In another implementation,
once an object type is added to the tracking list of object types,
then all records of that type are tracked. The tenant can then
specify the particulars of how the tracking is to be performed.

US 9,411,855 B2

35

For example, the tenant can specify triggers as described
above, fields to be tracked, or any of the customizations
mentioned herein.

In some implementations, when a feed is defined as an
object in the database (e.g. as a child object of entity records
that can be tracked), a particular instance of the feed object
(e.g. for a particular record) can be create-able and delete-
able. In one implementation, if a user has access to a record
then the user can customize the feed for the record. In one
implementation, a record may be locked to prevent customi-
zation of its feed.

One method of creating a custom feed for users of a data-
base system according to implementations is now described.
Any of the following steps can be performed wholly or par-
tially with the database system, and in particular by one or
more processor of the database system.

In step A, one or more criteria specifying which events are
to be tracked for possible inclusion into a feed to be displayed
are received from a tenant. In step B, data indicative of an
event is received. In step C, the event is analyzed to determine
if the criteria are satisfied. In step D, if the criteria are satis-
fied, at least a portion of the data is added to a table (e.g. one
or more of the tables in FIG. 9A) that tracks events for inclu-
sion into at least one feed for a user of the tenant. The feed in
which feed items of an event may ultimately be displayed can
be a news feed, record feed, or a profile feed.

E. Creating Custom Feeds with Filtering

After feed items have been generated, they can be filtered
so that only certain feed items are displayed, which may be
tailored to a specific tenant and/or user. In one implementa-
tion, a user can specify changes to a field that meet certain
criteria for the feed item to show up in a feed displayed to the
user, e.g., a news feed or even an entity feed displayed directly
to the user. In one implementation, the criteria can be com-
bined with other factors (e.g. number of feed items in the
feed) to determine which feed items to display. For instance,
if a small number of feed items exist (e.g. below a threshold),
then all of the feed items may be displayed.

In one implementation, a user can specify the criteria via a
query on the feed items in his/her new feed, and thus a feed
may only return objects of a certain type, certain types of
events, feed tracked updates about certain fields, and other
criteria mentioned herein. Messages can also be filtered
according to some criteria, which may be specified in a query.
Such an added query can be added onto a standard query that
is used to create the news feed for a user. A first user could
specify the users and records that the first user is following in
this manner, as well as identify the specific feed items that the
first user wants to follow. The query could be created through
a graphical interface or added by a user directly in a query
language. Other criteria could include receiving only posts
directed to a particular user or record, as opposed to other feed
items.

In one implementation, the filters can be run by defining
code triggers, which run when an event, specific or otherwise,
occurs. The trigger could then run to perform the filtering at
the time the event occurs or when a user (who has certain
defined triggers, that is configured for a particular user)
requests a display of the feed. A trigger could search for
certain terms (e.g. vulgar language) and then remove such
terms or not create the feed item. A trigger can also be used to
send the feed item to a particular person (e.g. an administra-
tor) who does not normally receive the feed item were it not
for the feed item containing the flagged terms.

F. Access Checks

In one implementation, a user can access a feed of a record
if the user can access the record. The security rules for deter-

20

25

35

40

45

65

36

mining whether a user has access to arecord can be performed
in a variety of ways, some of which are described in U.S.
patent application Ser. No. 11/866,184 by Weissman et al.,
filed Oct. 2, 2007, titled “METHODS AND SYSTEMS FOR
CONTROLLING ACCESS TO CUSTOM OBJECTS IN A
DATABASE”, which is hereby incorporated by reference in
its entirety and for all purposes. For example, a security level
table can specify whether a user can see a particular type of
record and/or particular records. In one implementation, a
hierarchy of positions within a tenant is used. For example, a
manager can inherit the access levels of employees that the
manager supervises. Field level security (FLS) can also be
used to determine whether a particular feed tracked update
about an update to a field can be seen by the user. The field
change table 920 can be used to identify a field name or field
1D, and then whether the user has read access to that field can
be determined from an FLS table. For example, if a user could
not see a field of a social security number, the feed of the user
provided to the user would not include any feed items related
to the social security number field.

In one implementation, a user can edit a feed of a record if
the user has access to the record, e.g., deleting or editing a
feed item. In another implementation, a user (besides an
administrator) cannot edit a feed item, except for performing
an action from which a feed item can be created. In one
implementation, a user is required to have access to a particu-
lar record and field for a feed item to be created based on an
action of the user. In this case, an administrator can be con-
sidered to be a user with MODIFY-ALL-DATA security level.
In yet another implementation, a user who created the record
can edit the feed.

G. Posts

Inone implementation, the text of posts are stored in a child
table (post table 950), which can be cross-referenced with
event hifeed tracked update table 910. Post table 950 can
include event ID 951 (to cross-reference with event ID 911),
post text 952 to store the text of the post, and time/date 953.
An entry in post table 950 can be considered a feed post
object. Posts for a record can also be subject to access checks.
In one implementation, if a user can view a record then all of
the posts can be seen, i.e. there is not an additional level of
security check as there is for FLS. In another implementation,
an additional security check could be done, e.g., by checking
onwhether certain keywords (or phrases) exist in the post. For
instance, a post may not be not provided to specified users if
a certain keyword exists, or only provided to specified users if
akeyword exists. In another implementation, a table can exist
for status updates.

VIII. Subscribing to Users and Records to Follow

As described above, a user can follow users, groups, and
records. Implementations can provide mechanisms for a user
to manage which users, groups, and records that the user is
currently following. In one implementation, a user can be
limited to the number of users and records (collectively or
separately) that the user can follow. For example, a user may
be restricted to only following 10 users and 15 records, or as
another example, 25 total. Alternatively, the user may be
permitted to follow more or less users.

In one implementation, a user can go to a page of a record
and then select to follow that object (e.g., with a button
marked “follow” or “join”). In another implementation, a user
can search for a record and have the matching records show
up in a list. The search can include criteria of records that the
user might want to follow. Such criteria can include the
owner, the creation date, last comment date, and numerical
values of particular fields (e.g. an opportunity with a value of
more than $10,000).

US 9,411,855 B2

37

A follow button (or other activation object) can then reside
next to each record in the resulting list, and the follow button
can be selected to start following the record. Similarly, a user
can go to a profile page of a user and select to follow the user,
or a search for users can provide a list, where one or more
users can be selected for following from the list. The selec-
tions of subscribing and unsubscribing can add and delete
rows in table 920.

In some implementations, a subscription center acts as a
centralized place in a database application (e.g. application
platform 18) to manage which records a user subscribes to,
and which field updates the user wants to see in feed tracked
updates. The subscription center can use a subscription table
to keep track of the subscriptions of various users. In one
implementation, the subscription center shows a list of all the
items (users and records) a user is subscribed to. In another
implementation, a user can unsubscribe to subscribed objects
from the subscription center.

A. Automatic Subscription

In one implementation, an automatic subscription feature
can ensure that a user is receiving certain feeds. In this man-
ner, a user does not have to actively select certain objects to
follow. Also, a tenant can ensure that a user is following
objects that the user needs to be following.

In various implementations for automatically following
users, a default for small organizations can be to follow every-
one. For big organizations, the default can be to follow a
manager and peers. If a user is a manager, the default can be
to follow the manager’s supervisor, peers, and people that the
manager supervises (subordinates). In other implementations
for automatically following records, records that the user
owns may be automatically followed and/or records recently
viewed (or changed) may be automatically followed.

In one example, a new record is created. The owner (not
necessarily the user who created the entity) is subscribed to
the entity. If ownership is changed, the new owner may auto-
matically be subscribed to follow the entity. Also, after a lead
convert, the user doing the lead convert may be automatically
subscribed to the new account, opportunity, or contact result-
ing from the lead convert. In one implementation, the auto
subscription is controlled by user preference. That is a user or
tenant can have the auto subscribe feature enabled or not. In
one aspect, the defaultis to have the auto-subscribe turned on.

FIG. 9B shows a flowchart illustrating a method 900 for
automatically subscribing a user to an object in a database
system according to implementations. Any of the following
steps can be performed wholly or partially with the database
system, and in particular by one or more processor of the
database system.

Instep 901, one or more properties of an object stored in the
database system are received. The properties can be received
from administrators of the database system, or from users of
the database system (which may be an administrator of a
customer organization). The properties can be records or
users, and can include any of the fields of the object that are
stored in the database system. Examples of properties of a
record include: an owner of the record, a user that converted
the record from one record type to another record type,
whether the first user has viewed the record, and a time the
first user viewed the record. Examples of properties of a user
include: which organization (tenant) the user is associated
with, the second user’s position in the same organization, and
which other users the user had e-mailed or worked with on
projects.

In step 902, the database system receives one or more
criteria about which users are to automatically follow the
object. The criteria can be received from administrators of the

10

15

20

25

30

35

40

45

50

55

60

65

38

database system, or from one or more users of the database
system. The users may be an administrator of a customer
organization, which can set tenant-wide criteria or criteria for
specific users (who may also set the criteria themselves).
Examples of the criteria can include: an owner or creator of a
record is to follow the record, subordinates of an owner or
creator of a record are to follow the record, a user is to follow
records recently viewed (potentially after a specific number
of'views), records that a user has changed values (potentially
with a date requirement), records created by others in a same
business group as the user. Examples of the criteria can also
include: a user is to follow his/her manager, the user’s peers,
other users in the same business group as the user, and other
users that the user has e-mailed or worked with on a project.
The criteria can be specific to a user or group of users (e.g.
users of a tenant).

In step 903, the database system determines whether the
one or more properties of the object satisfy the one or more
criteria for a first user. In one implementation, this determi-
nation can occur by first obtaining the criteria and then deter-
mining objects that satisfy the criteria. The determination can
occur periodically, at time of creation of an object, or at other
times. If different users have different criteria, then the crite-
ria for a particular user or group could be searched at the same
time. Since users of different tenants normally cannot view
objects of another tenant, certain criteria does not have to be
checked. In another implementation, this determination can
occur by looking at certain properties and then identifying
any criteria that are met. In yet another implementation, the
criteria and properties can be used to find users that satisfy the
criteria.

In step 904, if the criteria are satisfied, the object is asso-
ciated with the first user. The association can be in a list that
stores information as to what objects are being followed by
the first user. User subscription table 940 is an example of
such a list. In one implementation, the one or more criteria are
satisfied if one property satisfies at least one criterion. Thus, if
the criteria are that a user follows his’her manager and the
object is the user’s manager, then the first user will follow the
object.

In one implementation, a user can also be automatically
unsubscribed, e.g. if a certain action happens. The action
could be a change in the user’s position within the organiza-
tion, e.g. a demotion or becoming a contractor. As another
example, if a case gets closed, then users following the case
may be automatically unsubscribed.

B. Feed and Subscription API

In one implementation, a feed and subscription center API
can enable tenants to provide mechanisms for tracking and
creating feed items, e.g., as described above for creating
custom feeds by allowing users to add custom events for
tracking. For example, after some initial feed items are cre-
ated (e.g. by administrators of the database system), outside
groups (e.g. tenants or software providers selling software to
the tenants) can ‘enable objects’ for feeds through a standard
API. The groups can then integrate into the subscription cen-
ter and the feed tracked update feeds on their own. In one
implementation, the feed and subscription center API can use
a graphical user interface implemented for the default feed
tracking. In one implementation, API examples include sub-
scribing to an entity by creating a new entity subscription
object for a particular user ID, or for all users of a tenant (e.g.
user subscription table 940). In one implementation, obtain-
ing all subscriptions for a given user can be performed by
using a query, such as “select . . . from EntitySubscription
where userid=". . ."”.

US 9,411,855 B2

39

Some implementations have restriction on non-admin
users, e.g. those without view all data permissions (VAD).
One restriction can be a limit clause on entity subscription
queries (e.g. queries on user subscription table 940), e.g.,
where the limit of the number of operations is less than 100.
In one implementation, users are not required to specify an
order-by, but if an order-by is specified they can only order on
fields on the entity subscription entity. In one implementa-
tion, filters on entity subscription can likewise only specify
fields on the entity subscription entity. In one aspect, the
object ID being followed can be sorted or filtered, but not the
object name.

In one implementation, one or more restrictions can also be
placed on the identification of feed items in a feed that a user
can access. For example, if a low-level user (i.e. user can
access few objects) is attempting to see a profile feed of a high
level user, a maximum number of checks (e.g. 500) for access
rights may be allowed. Such a restriction can minimize a cost
of'a feed request. In some implementations, there are restric-
tion on the type of queries (e.g. fields for filtering) allowed to
construct on feeds (e.g. on tables in FIG. 9A).

C. Sharing

As mentioned above, users may be restricted from seeing
records from other tenants, as well as certain records from the
tenant to which the user belongs (e.g. the user’s employer).
Sharing rules can refer to the access rules that restrict a user
from seeing records that the user is not authorized to see or
access. Additionally, in one implementation, a user may be
restricted to only seeing certain fields of a record, field-level
security (FLS).

In an implementation, access rule checks are done upon
subscription. For example, a user is not allowed to subscribe
to arecord or type of record that the user cannot access. In one
aspect, this can minimize (but not necessarily eliminate)
cases where a user subscribes to entities they cannot access.
Such cases can slow down news feed queries, when an access
check is performed (which can end up removing much of the
feed items). Thus, a minimization of access checks can speed
up operation. In another implementation, when feed items are
created dynamically, access rule checks may be done dynami-
cally at the time of subsequent access, and not upon subscrip-
tion or in addition to at time of subscription.

An example case where access checks are still performed is
when a first user follows a second user, but the second user
performs some actions on records or is following records that
the first user is not allowed to see. The first user may be
allowed to follow the second user, and thus the subscription is
valid even though the first user may not be able to see all of the
feed items. Before a feed tracked update is provided to a news
feed of the first user, a security check may be performed to
validate whether the first user has access rights to the feed
item. If not, the feed item is not displayed to the first user. In
one implementation, users can be blocked from feed items
that contain certain terms, symbols, account numbers, etc. In
one implementation, any user can follow another user. In
another implementation, users may be restricted as to which
users, objects, and/or records he/she can follow.

Regarding viewing privileges of a feed, in one implemen-
tation, a user can always see all of his own subscriptions (even
if he’s lost read access to a record). For example, a user can
become a contractor, and then the user may lose access to
some records. But, the user may still see that he/she is fol-
lowing the object. This can help if there is a limit to the
number of objects that can be followed. To unsubscribe a user
may need to know what they are following so they can unsub-
scribe and subscribe to objects the user can see. In another
implementation, for access to other people’s subscriptions, a

10

20

25

30

35

40

45

50

55

60

65

40

user can be required to need read-access on the record-id to
see the subscription. In some implementations, users with
authorization to modify all data can create/delete any sub-
scription. In other implementations, a user can create/delete
subscriptions only for that user, and not anyone else.

D. Configuration of which Field to Follow

There can be various feed settings for which feed items get
added to profile and record feeds, and which get added to
news feeds. In one implementation, for profile feeds and
entity feeds, feed tracked updates can be written for all stan-
dard and custom fields on the supported objects. In one imple-
mentation, feed settings can be set to limit how many and
which fields of a record are tracked for determining whether
a feed tracked update is to be generated. For example, a user
or administrator can choose specific fields to track and/or
certain ones not to track. In another implementation, there is
a separate limit for the number of trackable fields (e.g. 20) for
a record. Thus, only certain changes may be tracked in an
entity hifeed tracked update and show up in the feed. In yet
another implementation, default fields may be chosen for
tracking, where the defaults can be exposed in the subscrip-
tions center.

IX. Adding Items to a Feed

As described above, a feed includes feed items, which
include feed tracked updates and messages, as defined herein.
Various feeds can be generated. For example, a feed can be
generated about a record or about a user. Then, users can view
these feeds. A user can separately view a feed of a record or
user, e.g., by going to a home page for the user or the record.
As described above, a user can also subscribe (follow) to user
or record and receive the feed items of those feeds through a
separate feed application (e.g. in a page or window), which is
termed “chatter” in certain examples. The feed application
can provide each of the feeds that a user is following in a
single news feed.

A feed generator can refer to any software program running
on a processor or a dedicated processor (or combination
thereof) that can generate feed items (e.g. feed tracked
updates or messages) and combine them into a feed. In one
implementation, the feed generator can generate a feed item
by receiving a feed tracked update or message, identifying
what feeds the item should be added to, and adding the feed.
Adding the feed can include adding additional information
(metadata) to the feed tracked update or message (e.g. adding
a document, sender of message, a determined importance,
etc.). The feed generator can also check to make sure that no
one sees feed tracked updates for data that they don’t have
access to see (e.g. according to sharing rules). A feed genera-
tor can run at various times to pre-compute feeds or to com-
pute them dynamically, or combinations thereof.

In one implementation, the feed generator can de-dupe
events (i.e. prevent duplicates) that may come in from numer-
ous records (and users). For example, since a feed tracked
update can be published to multiple feeds (e.g. John Choe
changed the Starbucks Account Status) and a person can be
subscribed to both the Starbucks account and John Choe,
implementations can filter out duplicates before adding or
displaying the items in a news feed. Thus, the Feed Generator
can collapse events with multiple records and users for a
single transaction into a single feed tracked update and ensure
the right number of feed tracked updates for the particular
feed. In some implementations, an action by a user does not
create a feed item for that user (e.g. for a profile feed of that
user), and it is only the feed of the object being acted upon
(e.g. updated) for which a feed item is created. Thus, there

US 9,411,855 B2

41

should not be duplicates. For example, if someone updates the
status of a record, the feed item is only for the record and not
the user.

In one implementation, processor 417 in FIG. 4 can iden-
tify an event that meets criteria for a feed tracked update, and
then generate the feed tracked update. Processor 417 can also
identify a message. For example, an application interface can
have certain mechanisms for submitting a message (e.g. “sub-
mit” buttons on a profile page, detail page of a record, “com-
ment” button on post), and use of these mechanisms can be
used to identify a message to be added to a table used to create
a feed or added directly to a list of feed items ready for
display.

A. Adding Items to a Pre-Computed Feed

In some implementations, a feed of feed items is created
before a user requests the feed. Such an implementation can
run fast, but have high overall costs for storage. In one imple-
mentation, once a profile feed or a record feed has been
created, a feed item (messages and feed tracked updates) can
be added to the feed. The feed can exist in the database system
in avariety of ways, such as a related list. The feed can include
mechanisms to remove items as well as add them.

As described above, a news feed can be an aggregated feed
of all the record feeds and profile feeds to which a user has
subscribed. The news feed can be provided on the home page
of'the subscribing user. Therefore, a news feed can be created
by and exist for a particular user. For example, a user can
subscribe to receive entity feeds of certain records that are of
interest to the user, and to receive profile feeds of people that
are of interest (e.g. people on a same team, that work for the
user, are a boss of the user, etc.). A news feed can tell a user
about all the actions across all the records (and people) who
have explicitly (or implicitly) subscribed to via the subscrip-
tions center (described above).

In one implementation, only one instance of each feed
tracked update is shown on a user’s news feed, even if the feed
tracked update is published in multiple entities to which the
user is subscribed. In one aspect, there may be delays in
publishing news articles. For example, the delay may be due
to queued up messages for asynchronous entity hifeed
tracked update persistence. Different feeds may have differ-
ent delays (e.g. delay for new feeds, but none of profile and
entity feeds). In another implementation, certain feed tracked
updates regarding a subscribed profile feed or an entity feed
are not shown because the user is not allowed access, e.g. due
to sharing rules (which restrict which users can see which
data). Also, in one implementation, data of the record that has
been updated (which includes creation) can be provided in the
feed (e.g. a file or updated value of a feed can be added as a
flash rendition).

Examples are provided below as how it can be determined
which feed items to add to which news feeds. In one imple-
mentation, the addition of items to anews feed is driven by the
following user. For example, the user’s profile can be checked
to determine objects the user is following, and the database
may be queried to determine updates to these objects. In
another implementation, the users and records being followed
drive the addition of items to a news feed. Implementations
can also combine these and other aspects. In one implemen-
tation, a database system can be follower-driven if the number
of subscriptions (users and records the user is following) is
small. For example, since the number subscriptions are small,
then changes to a small number of objects need to be checked
for the follower.

Regarding implementations that are follower-driven, one
implementation can have a routine run for a particular user.
The routine knows the users and records that the user is

10

15

20

25

30

35

40

45

50

55

60

65

42

following. The routine can poll the database system for new
feed tracked updates and messages about the users and
records that are being followed. In one implementation, the
polling can be implemented as queries. In one implementa-
tion, the routine can run at least partially (even wholly) on a
user device.

Regarding implementations where a news feed is driven by
the record (or user) being followed, processor 417 can iden-
tify followers of the record after a feed item is added to the
record feed. Processor 417 can retrieve a list of the followers
from the database system. The list can be associated with the
record, and can be stored as a related list or other object that
is a field or child of the record.

In one implementation, profile and record feeds can be
updated immediately with a new feed item after an action is
taken or an event occurs. A news feed can also be updated
immediately. In another implementation, a news feed can be
updated in batch jobs, which can run at periodic times.

B. Dynamically Generating Feeds

Insome implementations, a feed generator can generate the
feed items dynamically when a user requests to see a particu-
lar feed, e.g., a profile feed, entity feed, or the user’s news
feed. In one implementation, the most recent feed items (e.g.
top 50) are generated first. In one aspect, the other feed items
can be generated as a background process, e.g., not synchro-
nously with the request to view the feed. However, since the
background process is likely to complete before a user gets to
the next 50 feed items, the feed generation may appear syn-
chronous. In another aspect, the most recent feed items may
or may not include comments, e.g., that are tied to feed
tracked updates or posts.

In one implementation, the feed generator can query the
appropriate subset of tables shown in FIG. 9A and/or other
tables as necessary, to generate the feed items for display. For
example, the feed generator can query the event hifeed
tracked update table 910 for the updates that occurred for a
particular record. The ID of the particular record can be
matched against the ID of the record. In one implementation,
changes to a whole set of records can be stored in one table.
The feed generator can also query for status updates, posts,
and comments, each of which can be stored in different parts
of'a record or in separate tables, as shown in FIG. 9A. What
gets recorded in the entity hifeed tracked update table (as well
as what is displayed) can be controlled by a feed settings page
in setup, which can be configurable by an administrator and
can be the same for the entire organization, as is described
above for custom feeds.

In one implementation, there can be two feed generators.
For example, one generator can generate the record and pro-
file feeds and another generator can generate news feeds. For
the former, the feed generator can query identifiers of the
record or the user profile. For the latter, the news feed gen-
erator can query the subscribed profile feeds and record feeds,
e.g., user subscription table 940. In one implementation, the
feed generator looks at a person’s subscription center to
decide which feeds to query for and return a list of feed items
for the user. The list can be de-duped, e.g., by looking at the
event number and values for the respective table, such as field
name or ID, comment ID, or other information.

C. Adding Information to Feed Hifeed Tracked Update
Tables

FIG. 10 is a flowchart of a method 1000 for saving infor-
mation to feed tracking tables according to implementations.
In one implementation, some of the steps may be performed
regardless of whether a specific event or part of an event (e.g.
only one field of an update is being tracked) is being tracked.
In various implementations, a processor or set of processors

US 9,411,855 B2

43

(hardwired or programmed) can perform method 1000 and
any other method described herein.

In step 1010, data indicative of an event is received. The
data may have a particular identifier that specifies the event.
For example, there may be a particular identifier for a field
update. In another implementation, the transaction may be
investigated for keywords identifying the event (e.g., terms in
a query indicating a close, change field, or create operations).

In step 1020, it is determined whether the event is being
tracked for inclusion into feed tables. The determination of
what is being tracked can be based on a tenant’s configuration
as described above. In one aspect, the event has an actor
(person performing an event), and an object of the event (e.g.
record or user profile being changed).

In step 1030, the event is written to an event hifeed tracked
update table (e.g. table 910). In one implementation, this feed
tracking operation can be performed in the same transaction
that performs a save operation for updating a record. In
another implementation, a transaction includes at least two
roundtrip database operations, with one roundtrip being the
database save (write), and the second database operation
being the saving of the update in the hifeed tracked update
table. In one implementation, the event hifeed tracked update
table is chronological. In another implementation, if user A
posts on user B’s profile, then user A is under the “created by”
913 and user B is under the object ID 912.

In step 1040, a field change table (e.g. field change table
920) can be updated with an entry having the event identifier
and fields that were changed in the update. In one implemen-
tation, the field change table is a child table of the event hifeed
tracked update table. This table can include information about
each of'the fields that are changed. For example, for an event
that changes the name and balance for an account record, an
entry can have the event identifier, the old and new name, and
the old and new balance. Alternatively, each field change can
be in a different row with the same event identifier. The field
name or ID can also be included to determine which field the
values are associated.

In step 1050, when the event is a post, a post table (e.g. post
table 950) can be updated with an entry having the event
identifier and text of the post. In one implementation, the field
change table is a child table of the event hifeed tracked update
table. In another implementation, the text can be identified in
the transaction (e.g. a query command), stripped out, and put
into the entry at the appropriate column. The various tables
described herein can be combined or separated in various
ways. For example, the post table and the field change table
may be part of the same table or distinct tables, or may include
overlapping portions of data.

In step 1060, a comment is received for an event and the
comment is added to a comment table (e.g. comment table
930). The comment could be for a post or an update of a
record, from which a feed tracked update can be generated for
display. In one implementation, the text can be identified in
the transaction (e.g. a query command), stripped out, and put
into the entry at the appropriate column.

D. Reading Information from Feed Hifeed Tracked Update
Tables

FIG. 11 is a flowchart of a method 1100 for reading a feed
item as part of generating a feed for display according to
implementations. In one implementation, the feed item may
be read as part of creating a feed for a record.

In step 1110, a query is received for an event hifeed tracked
update table (e.g. event hifeed tracked update table 910) for
events related to a particular record. In one implementation,
the query includes an identifier of the record for which the
feed is being requested. In various implementations, the

10

15

20

25

30

35

40

45

50

55

60

65

44

query may be initiated from a detail page of the record, a
home page of a user requesting the record feed, or from a
listing of different records (e.g. obtained from a search or
from browsing).

In step 1120, the user’s security level can be checked to
determine if the user can view the record feed. Typically, a
user can view a record feed, if the user can access the record.
This security check can be performed in various ways. In one
implementation, a first table is checked to see if the user has
a classification (e.g. a security level that allows him to view
records of the given type). In another implementation, a sec-
ond table is checked to see if the user is allowed to see the
specific record. The first table can be checked before the
second table, and both tables can be different sections of a
same table. If the user has requested the feed from the detail
page of the record, one implementation can skip the security
level check for the record since the check was already done
when the user requested to view the detail page.

In one implementation, a security check is determined
upon each request to view the record feed. Thus, whether or
not a feed item is displayed to a user is determined based on
access rights, e.g., when the user requests to see a feed of a
record or a news feed of all the objects the user is following.
In this manner, if a user’s security changes, a feed automati-
cally adapts to the user’s security level when it is changed. In
another implementation, a feed can be computed before being
requested and a subsequent security check can be made to
determine whether the person still has access right to view the
feed items. The security (access) check may be at the field
level, as well as at the record level.

In step 1130, if the user can access the record, a field level
security table can be checked to determine whether the user
can see particular fields. In one implementation, only those
fields are displayed to the user. Alternatively, a subset of those
the user has access to is displayed. The field level security
check may optionally be performed at the same time and even
using the same operation as the record level check. In addi-
tion, the record type check may also be performed at this time.
If the user can only see certain fields, then any feed items
related to those fields (e.g. as determined from field change
table 920) can be removed from the feed being displayed.

In step 1140, the feed items that the user has access to are
displayed. In one implementation, a predetermined number
(e.g. 20) of feed items are displayed at a time. The method can
display the first 20 feed items that are found to be readable,
and then determine others while the user is viewing the first
20. In another implementation, the other feed items are not
determined until the user requests to see them, e.g., by acti-
vating a see more link.

FIG. 12 is a flowchart of a method 1200 for reading a feed
item of a profile feed for display according to implementa-
tions. In one implementation, the query includes an identifier
of the user profile feed that is being requested. Certain steps
may be optional, as is also true for other methods described
herein. For example, security checks may not be performed.

In step 1210, a query is directed to an event hifeed tracked
update table (e.g. event hifeed tracked update table 910) for
events having a first user as the actor of the event (e.g. creation
of'an account) or on which the event occurred (e.g. a post to
the user’s profile). In various implementations, the query may
be initiated by a second user from the user’s profile page, a
home page ofa user requesting the profile feed (e.g. from a list
of users being followed), or from a listing of different users
(e.g. obtained from a search or from browsing). Various
mechanisms for determining aspects of events and obtaining
information from tables can be the same across any of the
methods described herein.

US 9,411,855 B2

45

In step 1220, a security check may also be performed on
whether the second user can see the first user’s profile. In one
implementation any user can see the profile of another user of
the same tenant, and step 1220 is optional.

In step 1230, a security (access) check can be performed
for the feed tracked updates based on record types, records,
and/or fields, as well security checks for messages. In one
implementation, only the feed tracked updates related to
records that the person has updated are the ones that need
security check as the feed items about the user are readable by
any user of the same tenant. Users of other tenants are not
navigable, and thus security can be enforced at a tenant level.
In another implementation, messages can be checked for
keywords or links to a record or field that the second user does
not have access.

As users can have different security classifications, it is
important that a user with a low-level security cannot see
changes to records that have been performed by a user with
high-level security. In one implementation, each feed item
can be checked and then the viewable results displayed, but
this can be inefficient. For example, such a security check
may take a long time, and the second user would like to get
some results sooner rather than later. The following steps
illustrate one implementation of how security might be
checked for a first user that has a lot of feed items, but the
second user cannot see most of them. This implementation
can be used for all situations, but can be effective in the above
situation.

In step 1231, a predetermined number of entries are
retrieved from the event hifeed tracked update table (e.g.
starting from the most recent, which may be determined from
the event identifier). The retrieved entries may just be ones
that match the user ID of the query. In one implementation,
entries are checked to find the entries that are associated with
the user and with a record (i.e. not just posts to the user
account). In another implementation, those entries associated
with the user are allowed to be viewed, e.g. because the
second user can see the profile of the first user as determined
in step 1220.

In step 1232, the record identifiers are organized by type
and the type is checked on whether the second user can see the
record types. Other checks such as whether a record was
manually shared (e.g. by the owner) can also be performed. In
one implementation, the queries for the different types can be
done in parallel.

In step 1233, if a user can see the record type, then a check
can be performed on the specific record. In one implementa-
tion, if a user can see a record type, then the user can see all of
the records of that type, and so this step can be skipped. In
another implementation, the sharing model can account for
whether a user below the second user (e.g. the second user is
amanager) can see the record. In such an implementation, the
second user may see such a record. In one implementation, if
a user cannot see a specific record, then comments on that
record are also not viewable.

In step 1234, field level sharing rules can be used to deter-
mine whether the second user can see information about an
update or value of certain fields. In one implementation,
messages can be analyzed to determine if reference to a
particular field name is made. If so, then field level security
can be applied to the messages.

In step 1280, steps 1231-1234 are repeated until a stopping
criterion is met. In one implementation, the stopping criteria
may be when a maximum number (e.g. 100) of entries that are
viewable have been identified. In another implementation, the
stopping criteria can be that a maximum number (e.g. 500) of

40

45

55

46

entries from the entity hifeed tracked update table have been
analyzed, regardless of whether the entries are viewable or
not.

In one implementation, a news feed can be generated as a
combination of the profile feeds and the entity feeds, e.g. as
described above. In one implementation, a list of records and
user profiles for the queries in steps 1110 and 1210 can be
obtained form user subscription table 940. In one implemen-
tation, there is a maximum number of objects that can be
followed.

In various implementations, the entity hifeed tracked
update table can be queried for any one or more of the fol-
lowing matching variables as part of determining items for a
feed: CreatedDate, CreatedByld, CreatedBy.FirstName, Cre-
atedBy.LastName, Parentld, and Parent.Name. The child
tables can also be queried for any one or more of the following
matching variables as part of determining items for a feed:
DataType, FieldName, OldValue, and NewValue. A query
can also specify how the resulting feed items can be sorted for
display, e.g., by event number, date, importance, etc. The
query can also include a number of items to be returned,
which can be enforced at the server.

The two examples provided above can be done periodically
to create the feeds ahead of time or done dynamically at the
time the display of a feed is requested. Such a dynamic
calculation can be computationally intensive for a news feed,
particularly if many users and records are being followed,
although there can be a low demand for storage. Accordingly,
one implementation performs some calculations ahead of
time and stores the results in order to create a news feed.

E. Partial Pre-Computing of Items for a Feed

FIG. 13 is a flowchart of a method 1300 of storing event
information for efficient generation of feed items to display in
a feed according to implementations. In various implementa-
tions, method 1300 can be performed each time an event is
written to the events hifeed tracked update table, or periodi-
cally based on some other criteria (e.g. every minute, after
five updates have been made, etc.).

In step 1310, data indicative of an event is received. The
data may be the same and identified in the same way as
described for step 1010. The event may be written to an event
hifeed tracked update table (e.g. table 910).

In step 1320, the object(s) associated with the event are
identified. In various implementations, the object may be
identified by according to various criteria, such as the record
being changed, the user changing the record, a user posting a
message, and a user whose profile the message is being posted
to.

In step 1330, the users following the event are determined.
In one implementation, one or more objects that are associ-
ated with the event are used to determine the users following
the event. In one implementation, a subscription table (e.g.
table 940) can be used to find the identified objects. The
entries of the identified objects can contain an identifier (e.g.
user 1D 941) of each the users following the object

In step 1340, the event and the source of the event, e.g., a
record (for a record update) or a posting user (for a user-
generated post) are written to a news feed table along with an
event identifier. In one implementation, such information is
added as a separate entry into the news feed table along with
the event ID. In another implementation, each of the events
for a user is added as a new column for the row of the user. In
yet another implementation, more columns (e.g. columns
from the other tables) can be added.

News feed table 960 shows an example of such a table with
user ID 961 and event ID or pointer 962. The table can be
organized in any manner. One difference from event hifeed

US 9,411,855 B2

47

tracked update table 910 is that one event can have multiple
entries (one for each subscriber) in the news feed table 960. In
one implementation, all of the entries for a same user are
grouped together, e.g., as shown. The user U819 is shown as
following events E37 and E90, and thus any of the individual
feed items resulting from those events. In another implemen-
tation, any new entries are added at the end of the table. Thus,
all of the followers for a new event can be added as a group.
In such an implementation, the event IDs would generally be
grouped together in the table. Of course, the table can be
sorted in any suitable manner.

In an implementation, if the number of users is small, then
the feed items in one or more of the tables may be written as
part of the same write transaction. In one implementation, the
determination of small depends on the number of updates
performed for the event (e.g. a maximum number of update
operations may be allowed), and if more operations are per-
formed, then the addition of the feed items is performed. In
one aspect, the number of operations can be counted by the
number of rows to be updated, including the rows of the
record (which depends on the update event), and the rows of
the hifeed tracked update tables, which can depend on the
number of followers. In another implementation, if the num-
ber of users is large, the rest of the feed items can be created
by batch. In one implementation, the feed items are always
written as part of a different transaction, i.e., by batch job.

In one implementation, security checks can be performed
before an entry is added to the news feed table 960. In this
manner, security checks can be performed during batch jobs
and may not have to be performed at the time of requesting a
news feed. In one implementation, the event can be analyzed
and if access is not allowed to a feed item of the event, then an
entry is not added. In one aspect, multiple feed items for a
same user may not result from a same event (e.g. by how an
event is defined in table 910), and thus there is no concern
about a user missing a feed item that he/she should be able to
view.

In step 1350, a request for a news feed is received from a
user. In one implementation, the request is obtained when a
user navigates to the user’s home page. In another implemen-
tation, the user selects a table, link, or other page item that
causes the request to be sent.

In step 1360, the news feed table and other tables are
accessed to provide displayable feed items of the news feed.
The news feed can then be displayed. In one implementation,
the news feed table can then be joined with the event hifeed
tracked update table to determine the feed items. For
example, the news feed table 960 can be searched for entries
with a particular user ID. These entries can be used to identify
event entries in event hifeed tracked update table 910, and the
proper information from any child tables can be retrieved.
The feed items (e.g., feed tracked updates and messages) can
then be generated for display.

In one implementation, the most recent feed items (e.g. 100
most recent) are determined first. The other feed items may
then be determined in a batch process. Thus, the feed item that
a user is most likely to view can come up first, and the user
may not recognize that the other feed items are being done in
batch. In one implementation, the most recent feed items can
be gauged by the event identifiers. In another implementation,
the feed items with a highest importance level can be dis-
played first. The highest importance being determined by one
or more criteria, such as, who posted the feed item, how
recently, how related to other feed items, etc.

In one implementation where the user subscription table
940 is used to dynamically create a news feed, the query
would search the subscription table, and then use the object

10

15

20

25

30

35

40

45

50

55

60

65

48

IDs to search the event hifeed tracked update table (one search
for each object the user is following). Thus, the query for the
news feed can be proportional to the number of objects that
one was subscribing to. The news feed table allows the inter-
mediate step of determining the object IDs to be done at an
earlier stage so that the relevant events are already known.
Thus, the determination of the feed is no longer proportional
to the number of object being followed.

In some implementations, a news feed table can include a
pointer (as opposed to an event identifier) to the event hifeed
tracked update table for each event that is being followed by
the user. In this manner, the event entries can immediately be
retrieved without having to perform a search on the event
hifeed tracked update table. Security checks can be made at
this time, and the text for the feed tracked updates can be
generated.

X. Display of a Feed

Feeds include messages and feed tracked updates and can
show up in many places in an application interface with the
database system. In one implementation, feeds can be scoped
to the context of the page on which they are being displayed.
For example, how a feed tracked update is presented can vary
depending on which page it is being displayed (e.g. in news
feeds, on a detail page of a record, and even based on how the
user ended up at a particular page). In another implementa-
tion, only a finite number of feed items are displayed (e.g. 50).
In one implementation, there can be a limit specifically on the
number of feed tracked updates or messages displayed. Alter-
natively, the limit can be applied to particular types of feed
tracked updates or messages. For example, only the most
recent changes (e.g. 5 most recent) for a field may be dis-
played. Also, the number of fields for which changes are
displayed can also be limited. Such limits can also be placed
on profile feeds and news feeds. In one implementation, feed
items may also be subject to certain filtering criteria before
being displayed, e.g., as described below.

A. Sharing Rules for Feeds

As mentioned above, a user may not be allowed to see all of
the records in the database, and not even all of the records of
the organization to which the user belongs. A user can also be
restricted from viewing certain fields of a record that the user
is otherwise authorized to view. Accordingly, certain imple-
mentations use access rules (also called sharing rules and
field-level security FLS) to ensure that a user does not view a
feed tracked update or message that the user is not authorized
to see. A feed of a record can be subject to the same access
rules as the parent record.

In one implementation, access rules can be used to prevent
subscription to a record that the user cannot see. In one
implementation, a user can see a record, but only some of the
fields. In such instances, only items about fields that the user
can access may be displayed. In another implementation,
sharing rules and FLS are applied before a feed item is being
added to a feed. In another implementation, sharing rules and
FLS are applied after a feed item has been added and when the
feed is being displayed. When a restriction of display is men-
tioned, the enforcement of access rules may occur at any stage
before display.

In some implementations, the access rules can be enforced
when a query is provided to a record or a user’s profile to
obtain feed items for a news feed of a user. The access rules
can be checked and cross-references with the feed items that
are in the feed. Then, the query can only return feed items for
which the user has access.

In other implementations, the access rules can be enforced
when a user selects a specific profile feed or record feed. For
example, when a user arrives on a home page (or selects a tab

US 9,411,855 B2

49

to see the record feed), the database system can check to see
which feed items the user can see. In such an implementation,
each feed item can be associated with metadata that identifies
which field the feed item is about. Thus, in one implementa-
tion, a feed tracked update is not visible unless the associated
record and/or field are visible to the user.

In one example, when a user accesses a feed of a record, an
access check can be performed to identify whether the user
can access the object type of the record. In one implementa-
tion, users are assigned a profile type, and the profile type is
cross-referenced (e.g. by checking a table) to determine
whether the profile type of the user can see the object type of
the record.

In some implementations, access to specific records can be
checked, e.g., after it has been determined that the user can
access the record type. Rules can be used to determine the
records viewable by a user. Such rules can determine the
viewable records as a combination of those viewable by pro-
file type, viewable due to a profile hierarchy (e.g. a boss can
view records of profile types lower in the hierarchy), and
viewable by manual sharing (e.g. as may be done by an owner
of'arecord). In one implementation, the records viewable by
a user can be determined beforehand and stored in a table. In
one implementation, the table can be cross-referenced by user
(or profile type of a user) to provide a list of the records that
the user can see, and the list can be searched to determine if
the record at issue is among the list. In another implementa-
tion, the table can be cross-referenced by record to determine
alist of the profile types that can access the record, and the list
can be searched to find out if the requesting user is in the list.
Inanother implementation, the records viewable by auser can
be determined dynamically at the time of the access check,
e.g., by applying rules to data (such as user profile and hier-
archy information) obtained from querying one or more
tables.

In other implementations, checks can be made as to
whether a user has access to certain fields of a record, e.g.,
after it has been determined that the user can access the
record. In one aspect, the access check on fields can be per-
formed on results already obtained from the database, to filter
out fields that the user cannot see. In one implementation, the
fields associated with retrieved feed items are determined,
and these fields are cross-referenced with an access table that
contains the fields accessible by the user (e.g. using the profile
type of the user). Such an access table could also be a negative
access table by specifying fields that the user cannot see, as
can other access tables mentioned herein. In one implemen-
tation, the field level access table is stored in cache at a server.

In one implementation, a user can see the same fields
across all records of a certain type (e.g. as long as the user can
see the record). In one implementation, there is a field level
access table for each object type. The access table can be
cross-referenced by user (e.g. via profile type) or field. For
example, a field can be identified along with the profile types
that can see the field, and it can be determined whether the
user’s profile type is listed. In another example, the user can
be found and the fields to which the user has access can be
obtained. In another implementation, the accessible fields
could be specified for each record.

Regarding profile feeds and news feeds, a first user may
perform an action on a record, and a feed tracked update may
be generated and added to the first user’s profile feed. A
second user who is allowed to follow the first user may not
have access rights to the record. Thus, the feed tracked update
can be excluded from a news feed of the second user, or when
the second user views the first user’s profile feed directly. In
one implementation, if a user is already on the detail page,

30

35

40

45

50

then another access check (at least at the record level) may
optionally notbe performed since a check was already done in
order to view the detail page.

In some implementations, for profile feeds and news feeds,
the feed items can be organized by object type. I'T can then be
determined whether the requesting user can access to those
object types. Other access checks can be done independently
or in conjunction with these access checks, as is described
above.

B. API Implementation

Various implementations can implement the access rules in
various ways. In one implementation, all recent feed items (or
more generally events) are retrieved from a feed that is ready
fordisplay (e.g. after a feed generator performs formatting) or
a table. Then, bulk sharing checks can be applied on the
retrieved items. The viewable feed items of the most recent set
can then be displayed.

In another implementation regarding a profile feed, for
non-VAD (view all data) users, i.e. users who can see every-
thing, certain functions can be overridden. In one implemen-
tation, a FROM clause in a query can be overridden to be a
pipelined function, e.g., with different parts of the query
being operated on at the same time, but with different opera-
tions of a pipeline. This pipeline function can be given a row
limit and the maximum number of sharing checks to run. It
can loop, selecting the next batch of rows, run sharing checks
against them in bulk, and pipe back any IDs which are acces-
sible. In one aspect, in nearly all cases, the user feed can
contain accessible IDs so the sharing checks can pass on the
first loop. However, it is possible the sharing may have
changed such that this user’s access is greatly reduced. In one
worst case, implementations can run sharing checks on up to
the maximum number of sharing check rows (e.g. a default
500) and then terminate the function with the IDs which
passed so far, possibly zero. Such an example includes a low
level person viewing profile feed of CEO.

In some implementations, if the user has a small number of
subscriptions (e.g. <25), then implementations can first run
sharing checks on those IDs and then drive the main query
from those accessible IDs, as opposed to a semi-join against
the subscription and running sharing checks on the resulting
rows. In other implementations, FLS is enforced by building
up a TABLE CAST of the accessible field IDs from the
cached values. A main query can then join against this table to
filter only accessible fields.

XI. Filtering and Searching Feeds

It can be possible that a user subscribes to many users and
records, which can cause a user’s news feed to be very long
and include many feed items. In such instances, it can be
difficult for the user to read every feed item, and thus some
important or interesting feed items may not be read. In some
implementations, filters may be used to determine which feed
items are added to a feed or displayed in the feed, even though
a user may be authorized to see more than what is displayed.
Section VILE also provides a description of filtering based on
criteria.

In one implementation, an “interestingness” filter can
function as a module for controlling/recommending which
feed tracked updates make it to the news feed when the
number of items that a user subscribes to is large. In one such
implementation, a user can specify a filter, which is applied to
auser’s news feed or to record and profile feeds that the user
requests. Different filters can be used for each. For example,
processing can be done on the news feed to figure out which
feed tracked updates are the most relevant to the user. One
implementation can use an importance weight and level/rank-
ing, as described herein. Other implementations can include a

US 9,411,855 B2

51

user specifying keywords for a message and specitying which
records or users are most important.

In one implementation, a filter can be used that only allows
certain feed items to be added to a feed and/or to be displayed
as part of a feed. A filter can be used such that the removal or
non-addition of certain feed items automatically occur for
any new feed items after the filter criteria are entered. The
filter criteria can also be added retroactively. The criteria of
such a filter can be applied via a query mechanism as part of
adding a feed item to a table or displaying a feed, as described
in sections above. In various implementations, a user can
directly write a query or create the query through a graphical
user interface.

FIG. 14 is a flowchart of a method 1400 for creating a
custom feed for users of a database system using filtering
criteria according to implementations. Any of the following
steps can be performed wholly or partially with the database
system, and in particular by one or more processor of the
database system.

In step 1410, one or more criteria specifying which feed
items are to be displayed to a first user are received from a
tenant. In one implementation, the criteria specifies which
items to add to the custom feed. For example, the criteria
could specify to only include feed items for certain fields of a
record, messages including certain keywords, and other cri-
teria mentioned herein. In another implementation, the crite-
ria specifies which items to remove from the custom feed. For
example, the criteria could specify not to include feed items
about certain fields or including certain keywords.

In step 1420, the database system identifies feed items of
one or more selected objects that match the criteria. The feed
items can be stored in the database, e.g., in one or more of the
tables of FIG. 9A. In one implementation, the one or more
selected objects are the objects that the first user is following.
Inanother implementation, the one or more selected objects is
a single record whose record feed the first user is requesting.

In step 1430, the feed items that match the criteria are
displayed to the first user in the custom feed. The generation
of text for a feed tracked update can occur after the identifi-
cation of the feed items (e.g. data for a field change) and
before the display of the final version of the feed item.

In one implementation, the criteria are received before a
feed item is created. In another implementation, the criteria
are received from the first user. In one aspect, the criteria may
only used for determining feeds to display to the first user. In
yet another implementation, the criteria are received from a
first tenant and applies to all of the users of the first tenant.
Also, in an implementation where a plurality of criteria are
specified, the criteria may be satisfied for a feed item if one
criterion is satisfied.

Some implementations can provide mechanisms to search
for feed items of interest. For example, the feed items can be
searched by keyword, e.g., as entered by a user. As another
example, a tab (or other selection device) can show feed items
about or from a particular user. In one implementation, only
messages (or even just comments) from a particular user can
be selected.

In another implementation, a user can enter search criteria
so that the feed items currently displayed are searched and a
new list of matching feed items is displayed. A search box can
be used to enter keywords. Picklists, menus, or other mecha-
nisms can be used to select search criteria. In yet another
implementation, feed comments are text-indexed and search-
able. Feed comments accessibility and visibility can apply on
the search operation too.

In one implementation, when a user performs a search of
feeds, there can be an implicit filter of the user (e.g., by user

40

45

50

55

65

52

ID). This can restrict the search to only the news feed of the
user, and thus to only record feeds and profile feeds that the
user is subscribed. In another implementation, searches can
also be done across feeds of users and records that are not
being subscribed.

Besides searching for feed items that match a criteria, one
also could search for a particular feed item. However, in one
implementation, a user cannot directly query a feed item or
feed comment. In such an implementation, auser can query to
obtain a particular profile or record feed, and then navigate to
the feed item (e.g. as child of the parent feed). In another
implementation, the relationship from a feed to its parent
entity (e.g. a record or user profile) is uni-directional. That is
a user can navigate from the feed to the parent but not vice
versa.

In one implementation, a user can directly query the child
tables, e.g., comment table 930. Thus, a user could search for
comments only that user has made, or comments that contain
certain words. In another implementation, a user can search
for a profile feed of only one user. In yet another implemen-
tation, a user can search for profile feeds of multiple users
(e.g. by specitying multiple user names or IDs), which can be
combined into a single feed.

XII. Maintaining Records for Follower’S Feeds

If every feed item is stored and maintained on a follower’s
feed or even in the profile and/or record feeds, the amount of
data to be stored could be massive, enough to cause storage
issues in the system. In one implementation, the N (e.g. 50)
most recent feed items for each feed are kept. However, there
can be a need to keep certain older feed items. Thus, imple-
mentations can remove certain feed items, while keeping
others. In other implementations, old feed tracked updates
may be archived in a data store separate from where recent
feed items are stored.

In some implementations, feeds are purged by a routine
(also called a reaper) that can remove items deemed not
worthy to keep (e.g. old items). Any underlying data struc-
tures from which feed items are created can also be purged. In
one implementation, the reaper can remove certain items
when new items are added (e.g. after every 5th item added).
As another example, feed items may be deleted synchro-
nously during the save operation itself. However, this may
slow down each save operation. In one implementation, how-
ever, this may be better than incurring a larger cost when the
items are removed at longer intervals. In another implemen-
tation, the reaper can run periodically as a batch process. Such
routines can ensure that a table size does not become too
large. In one aspect, a reaper routine can keep the event hifeed
tracked update table relatively small so the sharing checks are
not extremely expensive.

In various implementations, the reaper can maintain a
minimum number (e.g. 50 or 100) of feed items per record,
maintain a minimum number of records per user (e.g. per user
1D), and not deleting feed items (or entire records) which have
comments against it. Such implementations can ensure that
the detail page and profile page have sufficient data to display
in a feed. Note that the sharing checks for feed queries can cut
down the number of records further for users with less access.
Thus, the number of records finally displayed for specific
users can be significantly less than a minimum number for a
specific profile or record feed. In one implementation, a
reaper deletes data that is older than a specified time (e.g. 6
months or a year).

In one implementation, the reaper can perform the deletion
of feed items (purging) as a batch up deletion. This can avoid
deletion of large number of records that may lead to locking
issues. In another implementation, the reaper can be run often

US 9,411,855 B2

53

so that the table does not become difficult to manage (e.g.
size-wise). In this way the reaper can work on a limited set of
records. In one implementation, the reaper may have logic
that deletes certain items (e.g. by an identification) from
tables (e.g. those in FIG. 9A), or sections of the tables.

XIII. Performing Actions in Response to Information
Updates Published on an Information Feed

Some implementations disclosed herein provide for trigger
rules, described in greater detail below, that facilitate the
performance of actions in response to conditions detected in
information updates created in an information feed system.
Such updates can include updates made to data records,
updates posted on a personal wall or bulletin board associated
with a user account, updates that include user comments, or
any other type of updates.

In some implementations, each trigger rule may include
one or more trigger conditions. When the trigger condition is
detected, the trigger rule may be activated. The trigger con-
dition may include any status or property associated with an
information update. The trigger condition may be detected by
analyzing an information update and any associated informa-
tion. The trigger condition may be specified by a menu selec-
tion, by custom code, or by any other mechanism.

In some implementations, each trigger rule may include
one or more trigger actions. The trigger action is performed
when the trigger condition is detected. The trigger action may
include any operation or activity within the feed system or
within a larger computing services environment associated
with the feed system. The trigger action may be specified by
a menu selection, by custom code, or by any other mecha-
nism.

FIG. 15 is a flowchart of method 1500 for a trigger rule life
cycle, performed according to one or more implementations.
The method 1500 shows a high-level overview of the types of
operations that may be performed in relation to a trigger rule.
The operations shown in FIG. 15 are discussed in additional
detail with respect to other methods described herein, includ-
ing the methods shown in FIGS. 16-21.

At1502, a trigger rule is created. In some implementations,
a trigger rule may be implemented in an information feed
system such as a social network. Creating the trigger rule may
include designating one or more actions and one or more
trigger conditions. When an information update satisfies the
one or more trigger conditions, the one or more trigger actions
are performed.

In some implementations, a trigger rule may be created
based on instructions received from a user. Alternately, or
additionally, a trigger rule may be created automatically by
the system.

Insomeimplementations, a trigger rule may be defined that
causes one or more users to follow or stop following an object
within the feed system. In this example, these actions may be
triggered by a trigger condition such as the inclusion of a text
string within an information update.

FIG. 22 shows an image of a user interface for configuring
one such type of trigger rule, generated according to one or
more implementations. The trigger condition interface 2202
allows a user to provide a text string representing a trigger
condition. In FIG. 22, the text string is “!ALLFOLLOW.”
When this text string is detected in an information update, the
trigger rule configured as shown in FIG. 22 will be activated.
The trigger rule description interface 2204 allows a user to
provide a description of the trigger rule. In FIG. 22, the
description is “All support users will follow the record.” The
trigger action interface 2206 allows a user to indicate a trigger
action. In FIG. 22, the selected trigger action is Follow, which
causes one or more designated user accounts to follow a

10

15

20

25

30

35

40

45

50

55

60

65

54

database record associated with the information update in
which the trigger condition is detected. The user account
selection interface 2208 allows a user to select user accounts
to automatically follow a database record when the trigger
ruleis activated. In FIG. 22, the user accounts for Brenda, Jay,
Linda, and Tim are selected.

FIGS. 23 and 24 show images of a user interface for acti-
vating the trigger rule configured in FIG. 22, generated
according to one or more implementations. In FIGS. 23 and
24, the user interface is displaying information regarding a
database record 2302. The user is creating an information
update to post for the database record 2302 in the information
update creation interface 2304. As shown in FIG. 23, the
information update includes the text “!ALLFOLLOW.”
Before the information update is posted, in FIG. 23, the
database record 2302 has no followers listed in the follower
interface 2306. When the information update 2308 is created
as shown in FIG. 24, the follower interface 2306 is updated to
display a list of followers. These followers are now following
the database record 2302 due to the activation of the trigger
rule configured in FIG. 22.

FIG. 25 shows an image of a user interface component for
configuring another such type of trigger rule, generated
according to one or more implementations. The trigger con-
dition interface 2502 includes the text string “! UNFOLLOW”
as a trigger condition. The trigger rule description interface
2504 includes the description “Unfollow everyone but Linda
from the record.” The trigger action interface 2506 includes
the selected trigger action Unfollow, which causes one or
more designated user accounts to stop following a database
record associated with the information update in which the
trigger condition is detected. The user account selection inter-
face 2508 includes the selected user accounts for Brenda, Jay,
and Tim.

FIG. 26 show images of a user interface for activating the
trigger rule configured in F1G. 25, generated according to one
or more implementations. In FIG. 26, the user interface is
displaying information regarding the database record 2302.
The information update 2310 includes the text “!UNFOL-
LOW” When the information update 2310 is created as
shown in FIG. 26, the follower interface 2304 is updated to
display a list of followers. All of the followers shown in FIG.
24 are removed except Linda due to the trigger rule shown in
FIG. 23.

Returning to FIG. 15, in some implementations a trigger
rule may define an operation for automatically translating text
in an information update from one language to another lan-
guage. Such a trigger rule may be especially useful in a
collaborative environment where teams of users are diverse
and globalized. In this example, the trigger condition may
include the presence of a text string such as “!translate.”
When the system detects the string “!translate” in an infor-
mation update, the system will translate the information
update. The source and destination languages for the transla-
tion may be specified within the translate rule or may be
designated within the information update (e.g., “!translate
English French™). The translated information update may be
transmitted as a message, posted as a new information update,
or treated in some other way.

In some implementations, a trigger rule may be defined to
monitor a particular data record in a database for a status
defined in the trigger condition. For example, the data record
may represent a sales lead. The trigger rule may define the
trigger condition as the status “actual sale.” When the system
detects a data record status has changed to an “actual sale,”
then the trigger condition is satisfied. In this example, the

US 9,411,855 B2

55

satisfaction of the trigger condition may cause the system to
email a message to each of the associated team members
about the actual sale.

In some implementations, a trigger rule may be defined to
monitor keywords on an information feed to police content.
For example, in a corporate setting, a team may be working on
a top secret case called “order 66,” the discussion of which is
forbidden by company policy. Anytime the system detects the
words “order 66 on an information feed, the system may
automatically generate an information update in response,
transmit a message to a user account, or delete the offending
information update. Such a rule may also be useful to police
profane or otherwise unacceptable language in an informa-
tion feed system.

FIGS. 32 and 33 show images of user interfaces for auto-
matically creating information updates in response to the
detection of designated watchwords, generated according to
one or more implementations. The name component 3202
shows the name “Order 66” for the custom trigger rule. The
message type component 3204 shows the message types reply
and email selected. The message content component 3206
shows the content of the message that will be automatically
created. The message recipient component 3208 shows one or
more user accounts that are configured to receive the auto-
matically generated message. The message template compo-
nent 3210 allows the message to be created according to a
designated template, which in FIG. 32 is empty. The message
subject component 3212 shows the subject line to include in
the automatically created message. The message content
component 3214 shows the content to include the in the
automatically created message.

In FIG. 33, the user has created the information update
3202 that includes the watchword trigger text “Order 66.”
When the trigger condition is detected, the trigger rule is
activated. Activation of the trigger rule automatically creates
the information update 3304. The automatically created
information update includes the subject line and content as
specified by the configuration interface shown in FIG. 3302.

Returning to FIG. 15, in some implementations, the trigger
rule may be defined to detect keywords in order to update
records in a database. For example, in an organization it may
be useful to streamline the process of reporting issues and
problems to an information technology (IT) department. The
trigger condition of the trigger rule may be defined to monitor
key words such as “help,” “problem with,” or the mention of
the IT group in the information update. Based on the infor-
mation update, the system may automatically create a new
customer case in the I'T queue.

In some implementations, the trigger rule may be defined
to escalate or draw attention to a data object associated with
aninformation update. For example, an escalation trigger rule
may be defined to detect the string “!911” in the text portion
of an information update associated to a data record. When
“1911” is detected in an information update, the system may
escalate the priority of the associated data record in a data
queue.

At 1504, an information update is monitored for a trigger
condition. In some implementations, the information feed
system may be configured to react to certain events or condi-
tions as defined in a trigger rule. In some instances, the infor-
mation feed system may monitor a batch of information
updates for the presence of a trigger condition. The monitor-
ing may be performed periodically, upon request, or accord-
ing to some other schedule. Alternately, or additionally, the
information feed system may compare a specific information
update with a trigger condition. The monitoring may be per-
formed when the information update is created or at some

10

15

20

25

30

35

40

45

50

55

60

65

56

other time. The creation of an information update is discussed
in additional detail with respect to the method 1600 shown in
FIG. 16, as well as other methods.

At 1506, the trigger action is performed when the trigger
condition is detected in the information update. In some
implementations, various types of trigger actions may be
associated with a trigger rule. For example, a trigger action
may be defined as the creation or deletion of a data record in
a database. In another example, the trigger action may be
defined as updating or deleting a message from an informa-
tion feed. In yet another example, a trigger action may be
defined as allowing a user to “follow” or “unfollow” an object
such as a data record. In yet another example, the trigger
action may be defined as the performance of a combination of
multiple events and/or actions.

In some implementations, a user interface may be provided
for displaying configuration settings for one or more trigger
rules. For example, FIG. 28 shows an image of a user interface
that shows configuration settings for different trigger rules,
generated according to one or more implementations. The big
brother trigger rule interface 2802 shows configuration set-
tings for the big brother trigger rule. As shown in FIG. 28, the
trigger rule can be run on demand or continuously. The sched-
uled posts trigger rule interface 2804 shows configuration
settings for the scheduled posts trigger rule. The scheduled
post trigger rule automatically creates information updates at
designated times. The watch words trigger rule interface 2806
shows configuration settings for the watch word trigger rule.
The watch word trigger rule automatically creates messages
based on scheduling information and watch words.

FIG. 16 is a flowchart of a method 1600 for creating a
trigger rule, performed according to one or more implemen-
tations. In some implementations, creating a trigger rule may
include operations for determining the scope of the trigger
rule, determining the instructions to detect a trigger condi-
tion, and determining the instructions of actions to perform in
response to detecting a trigger condition.

In some implementations, the method 1600 may be per-
formed at least in part at a computing device configured to
provide computing services associated with an information
feed system such as a social networking system. The method
1600 may be initiated when a request to create a trigger rule
is received at 1602.

At 1602, a request to create a trigger rule is received. In
some implementations, the request may be generated at a
client machine in communication with the computing device.
For example, a user at the client machine may wish to create
auser-defined trigger rule to detect a custom trigger condition
and perform a custom trigger action.

In some implementations, the request to create the trigger
rule may be generated from within the information feed sys-
tem. For example, an automatic process may identify and
make statistical associations between common conditions
and common actions in response to those conditions. This
process may determine that a trigger rule should be created to
link the identified conditions and actions.

In some implementations, a trigger rule may be created at
least in part with the use of a software package that includes
a trigger rule framework. The software package may be
accessible via an on-demand service environment available
via a network. The trigger rule framework may be pro-
grammed in a programming language such as C++, Java, or
Apex. The trigger rule framework may define core trigger
classes to allow the user or the organization to create or
customize a trigger rule. The user may implement or expand

US 9,411,855 B2

57

these classes in order to specify a trigger condition, a trigger
action, a trigger scope, or other information related to a trig-
ger rule.

In some implementations, a user may create the trigger rule
atleast in part with the use of a graphical user interface (GUI).
The GUI may allow the user to define a trigger condition
and/or a trigger action for a trigger rule. For example, the GUI
may include a form that provides user interface components
such as text boxes and drop down menus. Using these user
interface components, the user may define a trigger condition,
a trigger action, a trigger scope, or any other information
related to the trigger rule. For instance, the GUI may provide
a dropdown menu of predefined or user-defined trigger con-
ditions or actions for the user to select. Alternately, or addi-
tionally, the user may provide or select a script containing
computer programming language instructions to be per-
formed.

At 1604, the scope of the trigger rule is determined. In
some implementations, the scope may identify a type of infor-
mation updates to which the trigger rule applies.

For example, computing resources in an on-demand com-
puting services environment may be shared by multiple enti-
ties. In this case, the scope of a trigger rule may be limited to
a single entity to ensure that one entity’s data is not affected
by another entity’s trigger rule. As another example, an infor-
mation feed system may be shared by many different users. In
this case, the scope of a trigger rule may be limited to a
particular user account or group of user accounts to allow
users to use trigger rules in an individualized fashion.

In some implementations, the scope of the trigger rule may
be determined at least in part based on user input. For
example, a user may indicate that the application of the trigger
rule should be limited to a designated scope.

In some implementations, the scope of the trigger rule may
be determined at least in part by the system. For instance, the
system may automatically establish a default or minimum
trigger rule scope based on the user account, an organization
associated with the user account, a data record, some combi-
nation of parameters, or any other consideration.

In some implementation, the scope may be statically deter-
mined. For instance, the scope may be specified when the
trigger rule is created. In this case, the scope may be specified
via a GUI, via computer programming language instructions,
or via any other mechanism.

In some implementations, the scope may be determined
dynamically. For example, the system may analyze a user’s
account identify the user’s team members. Based on this
information, the system may select user accounts for inclu-
sion in the scope of the trigger rule.

At 1606, an instruction for detecting a condition in an
information update for triggering an action is determined.
The trigger condition may be defined as a status or property of
an information update or information included in the infor-
mation update.

In some implementations, the trigger condition may be any
type of status, condition, or information that may be associ-
ated with an information update. For example, the trigger
condition may include a text string or keyword that may be
present in a text portion of an information update. As another
example, the trigger condition may include a status or condi-
tion of the information update or of a data record associated
with an information update. As yet another example, the
trigger condition may include information retrieved from the
information feed system, from an on-demand computing ser-
vices environment, or from any other location.

In some implementations, the trigger condition instruction
may include computer programming language code for

20

30

40

45

55

65

58

detecting the trigger condition. For example, the trigger con-
dition instruction may include code that includes operations
for analyzing a string in an information update and determine
if the string matches the string defined in the trigger condi-
tion. These operations may include instructions for regular
expression analysis. In another example, the trigger condition
instruction may include code that includes operations for
retrieving information from various locations, such as a data
record associated with the information update or other loca-
tions in an on-demand computing services environment.
These operations may include instructions for querying a
database to determine information associated with database
records.

In some implementations, computer programming lan-
guage code for detecting the trigger condition may be pro-
vided via user input. For instance, a user may provide code
that overrides abstract methods to implement a trigger rule.

In some implementations, computer programming lan-
guage code for detecting the trigger condition may be gener-
ated at a server. For instance, a user may indicate that the
trigger rule should have a trigger condition in which an infor-
mation update is analyzed to determine whether the update
includes a designated text string. In this case, the server may
determine executable code to search an information update
based on the text string indicated by the user.

At 1608, a trigger action instruction for defining an action
to perform when the trigger condition is detected is deter-
mined. In some implementations, the trigger action instruc-
tion may include any type of instructions capable of being
performed within the information feed system. These instruc-
tions may include, but are not limited to: causing user
accounts to follow or stop following a data object, creating or
deleting a data object such as a database record, modifying a
data object, altering the status of a data record, changing an
association between data records, generating or deleting an
information update, transmitting a message, or some combi-
nation thereof.

In some implementations, computer programming lan-
guage code for performing the trigger action may be provided
via user input. For instance, a user may provide code that
overrides abstract methods to implement a trigger rule.

In some implementations, computer programming lan-
guage code for performing the trigger action may be gener-
ated at a server. For instance, a user may indicate that the
trigger rule should have a trigger action in which a list of
designated user accounts are made to follow a designated data
record. In this case, the server may determine executable code
to cause this action to occur based on the input provided by the
user.

In some implementations, the instructions for detecting the
trigger condition and/or defining the trigger action may
include instructions for analyzing the content of the informa-
tion update to select an appropriate action. For example, a
trigger condition may include the presence of the text string
“!ranslate,” the detection of which may result in translating
the information update from one language to another lan-
guage. In this case, the trigger rule instructions may facilitate
the specification of the source and/or destination languages
within the information update as well. For instance, the infor-
mation update could include the text string “!translate from
English to French”, indicating that the information update
should be translated from English to French. As illustrated by
this example, trigger rules can be flexibly configured to
accomplish a variety of tasks. Thus, the scope of the trigger
conditions and trigger actions may be limited only by the
framework used to specify the trigger rule and the computing
environment in which the trigger rule is implemented.

US 9,411,855 B2

59

At 1610, the configured trigger rule is stored. In some
implementations, the configured trigger rule may be stored at
a storage device or on any type of storage medium. The stored
trigger rule may include information identifying a scope of
the trigger rule, instructions for identifying a trigger condi-
tion, instructions for identifying a trigger action, aname of the
trigger rule, an owner of the trigger rule, and any other infor-
mation related to the trigger rule. The configured trigger rule
may be stored for later use and/or activated when it is created.

FIG. 17 is a flowchart of a method 1700 for activating a
trigger rule, performed according to one or more implemen-
tations. In some implementations, the method 1700 may be
used to activate a trigger rule configured as discussed with
respect to the trigger rule creation method 1600 shown in F1G.
16.

In some implementations, the method 1700 may be per-
formed at various times and according to various types of
scheduling information. For instance, the method 1700 may
be activated on demand, periodically, or at scheduled times.
As another example, the method 1700 may be activated when
a triggering event such as the creation of a new information
update is detected.

In some implementations, the dates and times of previous
instances of the method 1700 may be stored. Identification
information for scheduled instances of the method 1700 may
also be stored to facilitate alteration of the schedule or can-
cellation of the method instance.

In some implementations, instances of trigger rule activa-
tion methods may be scheduled as part ofa scheduled batch of
programming code for the feed system and/or on-demand
computing services environment. The scheduled batch of
programming code may be run periodically or at designated
times, such as every hour.

In some implementations, the method 1700 may execute a
query on a feed table such as UserFeed. For instance, the
method may filter out information updates made before the
previous run of the process. For an information update, the
process may call abstract methods that may be overridden by
implementation classes to implement the trigger rule.

At 1702, a trigger rule is identified. In some implementa-
tions, the trigger rule may define a trigger action to perform
when an information update satisfies a trigger condition. The
trigger rule may be stored on a storage medium and config-
ured in accordance with a configuration method as discussed
with respect to FIG. 16.

In some implementations, the trigger rule may be identified
by the system. For example, the system may activate a trigger
rule periodically or at scheduled times.

In some implementations, the trigger rule may be identified
at least in part by a user. For example, the system may receive
a request from a user to activate a particular trigger rule.

At 1704, a scope for the trigger rule is determined. In some
implementations, the scope defines a type of information
update to which the trigger rule applies. In some implemen-
tations, the scope may include one or more criteria for limit-
ing the type of information updates that are selected for com-
parison with the trigger rule.

In some implementations, the scope may limit the applica-
tion of the trigger rule to a particular entity or organization.
For instance, two or more entities may access an information
feed system provided via an on-demand computing service
environment. These entities may have separate data but use
shared computing resources for data processing. When a trig-
ger rule is created for one of the entities, the trigger rule may
be assigned an explicit or implicit scope that limits its appli-
cation to the entity for which the trigger rule is created.

10

15

20

25

30

35

40

45

50

55

60

65

60

In some implementations, the scope may limit the applica-
tion to information updates created in association with a
designated user account or group of user accounts. For
example, a user may create a personal trigger rule that only
applies to updates created by the user. As another example, a
trigger rule may be configured that applies to a designated
group of users, such as developers, but that does not apply to
users outside the group.

In some implementations, the scope may limit the applica-
tion to designated data record or group of data records. For
example, a trigger rule may be created that only applies to
data records of the type “Account.” When an information
update is created in association with an Account data record,
the information update may be compared with the trigger
condition associated with the trigger rule. However, informa-
tion updates creased in association with data records having
other data types may not be compared with the trigger con-
dition.

At 1706, an information update within the scope is selected
to monitor for the trigger condition. In some implementa-
tions, the information update may be selected by querying a
feed table for information updates that meet the criteria asso-
ciated with the scope.

At 1708, a determination is made as to whether the selected
information update satisfies the trigger condition. The imple-
mentation of the determination 1708 may depend largely
upon the configuration of the trigger rule. For example, if the
trigger rule includes the presence of a designated text string
within the information update as a trigger rule, then the deter-
mination 1708 may be made by comparing a text portion of
the information update with the designated text string. As
another example, if the trigger rule defines the trigger condi-
tion via custom computer programming language code, then
the determination 1708 may be made by executing the custom
computer programming language code.

At 1710, the trigger action is performed for the selected
information update. In some implementations, performing
the trigger action may involve implementing the action or
actions defined in operation 1608 shown in FIG. 16. For
example, the trigger action may include creating a data
record, translating the information update to a different lan-
guage, causing one or more user accounts to follow or unfol-
low a data record, or creating a scheduled information update.

In some implementations, the performance of the trigger
action 1710 may depend largely upon the configuration of the
trigger rule. For example, if the trigger rule includes adding a
designated pre-defined action as a trigger action, then the
designated pre-defined action will be performed. As another
example, if the trigger rule defines the trigger action via
custom computer programming language code, then the trig-
ger action may be performed at 1710 by executing the custom
computer programming language code.

In some implementations, the trigger action may include
making an update to a user’s UserFeed table portion as speci-
fied in the trigger rule. If more than one user is specified as a
recipient of a trigger action, then more than one user’s User-
Feed may be updated.

At 1712, a determination is made as to whether to continue
monitoring information updates for application of the trigger
rule. In some implementations, the determination may be
based at least in part on whether any unprocessed information
updates remain that fall within the scope of the trigger rule.

FIG. 18 is a flow chart of a method 1800 for performing a
translate rule. In some implementations, a trigger rule may be
configured as a translate rule. The translate rule includes an
indication of one or more actions to perform when an infor-
mation update satisfies a trigger condition. The actions may

US 9,411,855 B2

61

include operations for translating the information update
from a first language to a second language.

In some implementations, the first and second languages
may be any one of various written languages. One or both of
the first and second languages may be specified when the
translate rule is configured. Alternately, or additionally, one
or both of the first and second languages may be dynamically
determined. For instance, either or both of the languages may
be determined based on user-specified preferences.

FIG. 27 shows an image of a user interface in which a
translate trigger rule has been activated, generated according
to one or more implementations. The information update
2702 includes the text “I think you mean: This is the life!
&translate”. For the translate trigger rule, the trigger condi-
tion is the text string “&translate.”” When the trigger condition
is detected, the system automatically creates another infor-
mation update that translates the information update that
includes the trigger condition. In FIG. 27, the information
update 2704 includes the text in the information update 2702,
translated into French.

At 1802, a translate rule is identified. In some implemen-
tations, the translate rule may be retrieved from a storage
medium or database. The translate rule may be configured as
described with respect to the method 1600 shown in FIG. 16.
In some instances, the identification of the translate rule at
1802 may be substantially similar to the operation 1702
shown in FIG. 17.

At 1804, an information update created in a feed system is
identified. In some implementations, an information update
may be identified at various times and in various ways. In a
first example, the information update may be identified when
it is created. For instance, the creation of an information
update may trigger a process configured to determine whether
the information update satisfies a trigger condition. In a sec-
ond example, an information update may be identified upon
demand. For instance, a user may instruct the system to ana-
lyze one or more information updates to determine whether
any of them meet the trigger condition associated with a
trigger rule. In a third example, an information update may be
identified based on a schedule. For example, the system may
periodically analyze information updates to determine
whether any update satisfies the trigger condition.

In some implementations, a group of information updates
may be identified and analyzed in succession. For instance, as
discussed with respect to FIG. 17, information updates that
fall within a scope associated with the trigger rule may be
selected and analyzed for the presence of the trigger condi-
tion.

At 1806, a determination is made as to whether the text
portion of the information update includes a designated por-
tion of text. The designated text portion may be associated
with a translate rule trigger condition. For instance, the des-
ignated text portion may be the text string “!translate.”

In some implementations, the determination made at 1806
may be made at least in part by executing a string comparison
function comparing a text portion of the information update
and the designated text string. Alternately, or additionally, the
system may execute custom computer code associated with
the trigger condition instruction created during operation
1606 in FIG. 16. The trigger condition instruction may
include computer programming language instructions for
detecting the presence of the designated text string in a text
portion of the information update.

In some implementations, a different type of trigger con-
dition may be used. In FIG. 18, the trigger condition includes
the presence of a designated portion of text. However, various

10

15

20

25

30

35

40

45

50

55

60

65

62

types of trigger conditions may be used, as discussed with
respect to the operation 1606 shown in FIG. 16.

At 1808, the information update is translated from the first
language to the second language. In some implementations,
the operations used to translate the information update may
be strategically determined based on considerations such as
the language that the information update is being translated
from and the language that the information update is being
translated to.

In some implementations, the system may use a computer
program configured for language translation. For instance,
the system may use the Google® Translate API available
from Google, Inc. of Mountain View, Calif. Alternately, or
additionally, the system may use the Microsoft® Translator
program available from Microsoft, Inc. of Redmond, Wash.

In some implementation, the system may execute custom
computer code associated with the trigger action instruction
created during operation 1608 in FIG. 16. The trigger action
instruction may include computer programming instruction
for translating a first language to a second language.

At 1810, the translated information update is stored. In
some implementations, the translated information update
may be stored on a storage medium or storage device. For
instance, the translated information update may be stored in a
database, such as a multitenant database accessible to a plu-
rality of tenants.

In some implementations, the stored translation may be
presented in an information feed, as shown for example in
FIG. 27. Alternately, or additionally, the translated informa-
tion update may be transmitted in a message to one or more
user accounts. In some instances, publication information
may be stored with the translated information update. The
publication information may indicate user accounts desig-
nated for receipt of the translated information update.

FIG. 19 is a flowchart of a method 1900 for configuring an
automatic messaging rule, performed according to one or
more implementations. In some implementations, the method
1900 may be used to create a rule for automatically generating
messages in response to information updates. The message
may be an information update, an e-mail, a text message, or
any other type of message.

At 1902, a request to create an automatic messaging rule is
received. In some implementations, the rule may specify a
trigger condition for automatically generating a message. The
rule may also provide instructions for automatically generat-
ing a message. For instance, the rule may provide instructions
for generating the subject and content of the message. The
rule may also provide instructions identifying a recipient or
destination of the message.

In some implementations, the request to create an auto-
matic messaging rule may be in many respects similar to
operation 1602 shown in FIG. 16. For instance, the automatic
messaging rule may be created via a graphical user interface,
a computer programming language framework, or any other
technique.

At 1904, a trigger condition for creating a message is
identified. In some implementations, the identification of a
trigger condition may be substantially similar to operation
1606 shown in FIG. 16.

At 1906, a message type for the created message is deter-
mined. The message type may include any message capable
of being generated and stored or transmitted by the system.
For example, the message type may include an e-mail mes-
sage, an information update posted on an information feed, a
text message, or any other type of message. In some instances,
more than one message type may be indicated. For example,
when the presence of the trigger condition is detected in an

US 9,411,855 B2

63

information update, the system may generate an information
update in response and may also send an e-mail to a user such
as a system administrator.

At 1908, an indication of the content to include in the
created message is received. In some implementations, at
least a portion of the content may be fixed. For example, the
system may be configured to automatically generate a fixed
warning message when the trigger condition is detected. As
another example, the message may include a fixed portion
with designated locations at which dynamic content is
inserted.

In some implementations, at least a portion of the content
may be selected from the information update or determined
based on the information update. For example, the message
may quote a portion of the information update. As another
example, the message may translate a portion of the informa-
tion update from a first language to a second language for
inclusion in the message. As yet another example, a portion of
the message may be based on a status or quality of the infor-
mation update, such as the length of a text portion of the
information update, a posting time of the information update,
a formatting of a text portion of the information update, or
information in a data record with which the information
update is associated.

Insome implementations, the indication of the content may
include a selection of a predetermined content choice. For
example, the user may select amessage template from a list of
templates. As another example, the user may enter text to
include in the message.

Insome implementations, the indication of the content may
include computer programming language instructions for
determining the content. In some instances, the user may be
provided with a choice of preconfigured computer program-
ming instructions for generating the message based on the
information update. Alternately, or additionally, the user may
provide customized computer programming instructions for
dynamically generating the content.

At 1910, a recipient of the created message is identified. In
some implementations, the recipient of the created message
may include one or more user accounts, groups of user
accounts, e-mail addresses, mailing lists, or any other digital
messaging destinations associated with a user or users. In this
case, the recipient or recipients may be specified by any
identifier capable of being used to transmit a message to the
recipient. For example, an e-mail may be sent to a group of
e-mail addresses. As another example, an information update
may be posted in an information feed associated with a user
account.

In some implementations, the recipient of the created mes-
sage may include one or more data records, groups of data
records, publication destinations, or other digital location not
directly associated with a particular user. In this case, the
recipient or recipients may be identified by network address
or any other identifier capable of being used to transmit a
message to the recipient. For example, an information update
may be posted in an information feed associated with a par-
ticular data record. As another example, a message may be
posted on a webpage or other network accessible publication
location.

In some implementations, one or more recipients of the
message may be fixed. Alternately, or additionally, one or
more recipients of the message may be dynamically deter-
mined. For example, the message may be transmitted to one
user if it is generated during the morning and a different user
if it is generated during the evening. As another example, the
message may be sent to users included in a list that may be
periodically modified, such as a mailing list.

10

15

20

25

30

35

40

45

50

55

60

65

64

In some implementations, the indication of the recipients
may include a selection of recipients from a list. For example,
the user may select one or more recipients from a directory list
or search query result.

In some implementations, the indication of the recipients
may include computer programming language instructions
for determining the recipients. In some instances, the user
may be provided with a choice of preconfigured computer
programming instructions for selecting the recipients. Alter-
nately, or additionally, the user may provide customized com-
puter programming instructions for dynamically selecting the
message recipients.

At 1912, the automatic messaging rule is stored. In some
implementations, the storing of the automatic messaging rule
may be substantially similar to the storing of the configured
trigger rule discussed with respect to operation 1610 shown in
FIG. 16.

In some implementations, configuration of an automatic
messaging rule may include operations not shown in FIG. 19.
For instance, an automatic messaging rule may be associated
with a scope as discussed with respect to operation 1604
shown in FIG. 16.

FIG. 20 is a flowchart of a method 2000 for configuring a
data object creation rule, performed according to one or more
implementations. In some implementations, the data object
creation rule may be configured to cause a data object to be
automatically created in response to detecting a data object
creation trigger condition in an information update.

In some implementations, the automatic creation of a data
object in response to an information update based on a data
object creation rule may provide for rapid, configurable, and
automatic actions in an information feed system. For
example, a user may decide that a new data record should be
created to encapsulate a conversation conducted between dif-
ferent users via a series of information updates. The user may
be able to easily create the data rule simply by including a
trigger condition such as “laccount” within an information
update. As another example, the system may be configured to
automatically create a “Case” database record representing a
problem that needs to be addressed if the system detects
certain criteria that are indicative of a problem. These criteria
may include designated keywords (e.g., “problem” or
“issue”), designated feed conditions (e.g., an information
update thread containing three or more related comments, or
a designated length of time between successive information
updates), or designated information update conditions (e.g., a
length of an information update or other content-based analy-
sis).

FIGS. 34-36 show images of user interfaces for automati-
cally creating data records in response to detecting trigger
conditions, generated according to one or more implementa-
tions. The information update 3402 shows a user discussing a
problem she is having with the system. The information
update 3404 shows another update describing the same prob-
lem. The information update 3406 includes the trigger con-
dition “Icase,” which can be used to automatically create a
data record based on the information updates. The informa-
tion update 3408 is automatically created by the system to
show that a case data record has been created in response to
detecting the trigger condition.

FIG. 35 shows the database record 3502 that was automati-
cally created. The database record includes a subject 3504
imported from the information update. The description 3506
is also imported from the information update. FIG. 36 shows
the information updates displayed in FIG. 34. The informa-
tion updates 3602, 3604, and 3606 were added as comments
to the database record 3502.

US 9,411,855 B2

65

FIG. 29 shows an image of a user interface for receiving
custom computer programming language instructions for
generating a trigger rule, generated according to one or more
implementations. The instructions interface 2902 shows the
computer programming language instructions that have been
provided. In some implementations, these instructions may
override abstract methods provided by a custom trigger rules
framework. In FIG. 29, the overridden methods include get-
BotName() which returns a name of the custom trigger rule,
processUserFeed() which runs the custom trigger rule for a
user’s information feed, and processUserFeedComment()
which runs the custom trigger rule for an individual comment.

Returning to FIG. 20, a request to create a data object
creation rule is received at 2002. In some implementations,
the receipt of the request to create a data object creation rule
at the operation 2002 may be substantially similar to the
operation 1602 discussed with respect to FIG. 16.

At2004, a trigger condition for creating a data object based
on an information update is identified. In some implementa-
tions, the identification of the trigger condition at operation
2004 may be substantially similar to operation 1606 dis-
cussed with respect to FIG. 16.

In some implementations, various types of trigger condi-
tions may be used. In one example, the trigger condition may
include text. The text may identify the type of data object to
create. For instance, the trigger condition may include the text
“Icase”” When an information update is detected that includes
the text “Icase”, a case data object may be created.

At2006, atype of data object to create is identified. In some
implementations, various types and numbers of data objects
may be created in conjunction with a data object creation rule.
The data objects may include any digital constructs that are
capable of including or being associated with information. In
a first example, a data record in a database may be created. In
asecond example, a file such as a text file, a comma separated
value (CSV) file, a document file, or any other type of file may
be created. In a third example, an existing file may be updated
to include a new portion corresponding to the data object. In
a fourth example, a dynamic object implemented in a com-
puter programming language may be created within execut-
ing computer programming language code may be created.

In some implementations, a data object created in associa-
tion with a data object creation rule may include a database
record or collection of related database records accessible via
an on-demand computing services environment. For
instance, the database record may be a case, account, contact,
or other database record used to on-demand computing ser-
vices. These on-demand computing services may include
sales organization services, customer relations management
(CRM) services, or any other type of services.

In some implementations, portions of a data object creation
rule may be specified in various ways. For instance, some
portions of a data object creation rule, such as the trigger
condition, may be selected from pre-configured options in a
graphical user interface. As another example, other portions
of'a data object creation rule, such as a procedure for incor-
porating information related to an information update into the
created data object, may be provided as custom computer
programming code. The custom computer programming
code may be configured to be executed when the data object
creation rule is activated.

At 2008, a procedure for identifying content to include in
the created data object is determined. In some implementa-
tions, the procedure may include one or more instructions
directed to retrieving, determining, identifying, or selecting
information to include in the data object. For instance, the
data object may be a database record or collection of related

10

15

20

25

30

35

40

45

50

55

60

65

66

database records stored in a database. In this case, the data-
base record may have several fields for storing data. When the
trigger rule is activated, some or all of these fields may be
populated according to the procedure determined at operation
2008.

In some implementations, the content to include in the data
record may be identified within the information update. For
example, the information update may include the text
“lAccount ‘Acme’”. In this example, the name of the new
Account data record may be set to “Acme.”

In some implementations, the content to include in the data
record may be identified based on a previously existing data
record. For example, the information update may be a com-
ment posted for a previously-existing data record, such as an
Account object. When a Case object is created based on the
information update, the Case object may include a data field
that has a reference to the Account object, creating a child-
parent relationship between the Case object and the Account
object.

In some implementations, the content to include in the data
record may be identified based on related information
updates. For example, related information updates, such as
updates in the same conversation, may be checked to deter-
mine whether any of them mentions a name associated with a
Contact database record. If so, the newly created Account
data record may be associated with the Contact database
record mentioned in the related information update. As
another example, related information updates may be
checked to determine whether any of them mentions an
e-mail address. If so, the newly created Account data record
may be associated with the e-mail address (e.g., by creating a
new Contact data object). As yet another example, the system
may examine timestamp information for related data objects
to identify the earliest occurrence of a problem. This infor-
mation may be included in the created object to identify when
the problem first occurred, which may be useful for calculat-
ing compliance with a service level agreement (SLA) in a
services management system.

In some implementations, the content to include in the data
record may be retrieved from a network address, such as a
Web service URL. For instance, a related information update
may contain a link to a contact management service such as
Jigsaw. The system may visit the link to retrieve a formatted
set of data to include within the created data object or in
association with the created data object.

In some implementations, the content to include in the data
record may be retrieved from a related data record. For
instance, Lead and Opportunity data records in a customer
relations management (CRM) system may be linked to an
account or to one another based on information included in
the information update. Upon detecting a trigger condition in
an information update posted on a Lead record, a new, asso-
ciated Opportunity record may be created. The newly created
data record may draw information from a linked data record.

At 2010, a procedure for associating the information
update with the created data object is identified. In some
implementations, the procedure may include one or more
instructions directed to establishing any kind of connection
between the information update and the created data object.
For instance, the information update may be added as a com-
ment to the data object. Associating the information update
with the created data object may include adding an identifier
associated with the information update as data within the data
object.

In some implementations, other information updates may
also be associated with the created data object. For instance,
the information update in which the trigger condition is

US 9,411,855 B2

67

detected may be responding to one or more earlier-posted
information updates in a conversation thread. In this case, the
earlier-posted information updates may also be added as
comments to the data object that is created.

FIG. 21 is a flowchart of a method 2100 for configuring an
information update scheduling rule, performed according to
one or more implementations. In some implementations, the
method 2100 may be used to create an information update
scheduling rule for automatically generating an information
update at designated times. For example, an information
update may be scheduled as a daily or weekly reminder.

FIGS. 30 and 31 show images of user interfaces for creat-
ing scheduled information updates, generated according to
one or more implementations. The name component 3002
shows the name “Weekly reminder” for the scheduled infor-
mation update rule. The targeted users component 3004
shows the user accounts designated as receiving the sched-
uled information update. The message component 3006
shows the content that is included in the scheduled informa-
tion update. The scheduling component 3008 shows the date
and time scheduling information for creating the scheduled
information update.

InFIG. 31, the scheduled information update 3104 is added
to the user’s information feed at the designated time. Because
the information update is created according to a scheduling
rule, itis also displayed as a highlighted update 3102 at the top
of the user’s information feed.

In some implementations, the content of the information
update may be specified by the scheduling rule. For example,
in FIG. 31, the information update includes the message:
“The end of the week is coming fast! Don’t forget to post your
timecard to the system before you go home for the weekend!
Thanks! The Mgmt.”

Returning to FIG. 21, a request to create a scheduled infor-
mation update rule is received at 2102. In some implementa-
tions, the receipt of the request to create a scheduled infor-
mation update rule at the operation 2102 may be substantially
similar to the operation 1602 discussed with respect to FIG.
16. For instance, the information update rule may be created
via a graphical user interface, a computer programming lan-
guage framework, or any other technique.

At2104, the scheduling information for creating the sched-
uled information update rule is determined. In some imple-
mentations, the rule may specify a trigger condition for auto-
matically scheduling an information update. For example, the
rule may provide a date and time to generate the information
update. As another example, the rule may specify recurrence
information for periodically generating an information
update. The recurrence information may indicate whether the
information update is to be posted hourly, weekly, monthly,
yearly, and the like.

In some implementations, the scheduling information may
be dynamically determined. For example, the rule may refer
to scheduling information that is dynamically determined
based on a status of a database record, the content of a file, or
other information.

At2106, the recipients of the scheduled information update
are identified. In some implementations, the recipients of the
information update may include one or more user accounts or
groups of user accounts. Alternately, or additionally, the
recipients of the information update may include one or more
data records, groups of data records, publication destinations,
or other digital location not directly associated with a particu-
lar user. In some implementations, the identification of the
recipients of the information update may be substantially
similar to the operation 1910 discussed with respect to FIG.
19.

10

15

20

25

30

35

40

45

50

55

60

65

68

At 2108, the content to include within the scheduled infor-
mation update is determined. In some implementations, at
least a portion of the content may be fixed. Alternately, or
additionally, at least a portion of the content may be deter-
mined dynamically. In some implementations, the identifica-
tion of the content to include in the information update may be
substantially similar to the operation 1908 discussed with
respect to FIG. 19.

At 2110, the scheduled information update rule is stored. In
some implementations, the storing of the automatic messag-
ing rule may be substantially similar to the storing of the
configured trigger rule discussed with respect to operation
1610 shown in FIG. 16.

FIG. 37 shows a flowchart of a method 3700 for a keyword
life cycle method, performed according to some implemen-
tations. In some implementations, the method 3700 may be
used to configure keyword information for a user account and
monitor information updates for designated keywords. The
method 3700 may be initiated when a request to configure
keyword information for a user account is received.

At 3702, keyword configuration information for a user
account is identified. To distinguish the user account for
which the keyword configuration information is identified
from other user accounts within the system, the user account
for which the keyword configuration information is identified
is referred to herein as the keyword user account.

In some implementations, the keyword configuration
information may include various types of information for use
in monitoring information updates for the presence of one or
more keywords. For example, the keyword configuration
information may include an indication of one or more key-
words for which to monitor, an indication of one or more data
objects to follow upon detection of a keyword, an indication
of termination information for terminating the following of
one or more data objects, and any other information related to
the monitoring of information updates for the presence of
keywords.

At 3704, information updates are monitored for designated
keywords included in the keyword configuration. In some
implementations, the information updates may be monitored
according to various types of monitoring schemes. For
instance, an information update may be compared with the
designated keywords when the information update is created.
Alternately, or additionally, groups of information updates,
such as recently created information updates, may be periodi-
cally monitored for the presence of the designated keywords.

At 3706, the keyword user account is caused to follow a
data object associated with an information update when a
designated keyword is detected in the information update. In
some implementations, the data object may be any data object
accessible within an information feed system. For instance,
the data objet may be a different user account within the
information feed system. Alternately, the data object may be
a data record stored in a database. The data record may be
accessible via an on-demand database service provided via a
computer services environment.

In some implementations, when the keyword user account
is caused to follow the data object, the keyword user account
may receive future information updates related to the data
object. For example, if the data object is a different user
account, then the keyword user account may receive infor-
mation updates created by the different user account. As
another example, if the data object is a database record stored
in a database, then the keyword user account may receive
information updates that are created in association with the
database record. An information update may be created in

US 9,411,855 B2

69

association with a database record by posting the information
update on an information feed associated with the database
record.

In some implementations, more than one data object may
be followed. For example, the designated keyword may be
detected in an information update posted by a posting user
account in an information feed specific to a data record stored
in a database. In this case, the user account for which key-
words are configured may be made to follow both the posting
user account and the data record stored in the database.

At 3708, the user account is caused to stop following the
data object when a designated event has occurred. In some
implementations, data objects that are followed by a user
account as described with respect to operation 3706 may be
monitored for the occurrence of a designated termination
event provided in the configuration information for keyword
monitoring. When the designated termination event occurs,
the user account may be made to stop following the data
object.

In some implementations, various types of events may
trigger the system to cause the user account to stop following
the data object. For example, the user account may be made to
stop following the data object after a designated period of
time has passed since the following of the data object. As
another example, the user account may be made to stop fol-
lowing the data object after a designated period of time has
passed since the most recent occurrence of the designated
keyword in information updates associated with the data
object. As yet another example, the user account may be made
to stop following the data object when the number of objects
followed by the user account has reached a designated thresh-
old. Various trigger events, such as a designated period of
time for stopping the a user from following a data record, may
be configured by a user, for instance as discussed with respect
to FIG. 38.

FIG. 38 shows a flowchart of a method 3800 for configur-
ing keywords for a user account, performed according to
some implementations. In some implementations, the
method 3800 may be performed at a server in communication
with a client machine. The method 3800 may be used to
identify, receive, determine, or select information for moni-
toring information updates for keywords.

In some implementations, the method 3800 may be run
automatically when a user sets up a new profile. New users
may have difficulty identifying other user accounts or data
records to manually follow. By selecting keywords for moni-
toring topics of interest, a user may automatically follow
other user accounts that tend to post topics of interest to the
user.

In some implementations, the method 3800 may be run on
demand. For example, a user may transmit a request to con-
figure keywords for the user’s account. The request may be
transmitted to the system from a client machine associated
with the user.

At 3802, a request is received to configure keyword moni-
toring for a user account. In some implementations, the
request may be transmitted from a client machine to a server
configured to provide information feed services. Alternately,
or additionally, the request may be generated within the infor-
mation feed system. For instance, the system may identify a
keyword that is likely to be relevant to a particular user
account and then automatically initiate the keyword configu-
ration method 3800.

At 3804, a scope for monitoring information updates for a
keyword rule is identified. In some implementations, the
determination of the scope at operation 3804 may be substan-

10

20

25

30

35

40

45

50

55

70

tially similar to the determination of scope discussed with
respect to operation 1604 shown in FIG. 16.

In some implementations, information in addition to infor-
mation updates may be monitored for the presence of key-
words. For example, the scope may exclude or include the
names of files uploaded to a computing services environment
or an information feed system. As another example, the scope
may exclude or include information included within data
objects such as database records (e.g., Case, Account, Con-
tact) accessible via the on-demand computing services envi-
ronment.

In some implementations, the scope may identify a range
of time to monitor for the designated keyword. For example,
the scope may identify a number of days in the past to search
for the designated keyword. In this way, a user may be
informed of pre-existing information updates that mention
the designated keyword. As another example, the scope may
identify a number of days that the keyword rule will remain
active. In this way, the user may avoid automatically follow-
ing data objects based on a keyword topic that the user is
interested in only for a limited period of time.

At 3806, a keyword suggestion for the keyword rule is
generated. In some implementations, the system may gener-
ate a suggested keyword based on user input. For instance, the
system may auto-complete partially entered keywords based
ona dictionary or based on a list of keywords commonly used
within the information feed system.

In some implementations, the system may generate a sug-
gested keyword based on information associated with the user
account. For example, the user account may indicate that the
user is a Java® developer. In this case, the system may suggest
keywords such as “Java”, “object oriented”, and “program-
ming language” for keyword monitoring. As another
example, the user account may already be monitoring various
keywords, and the system may suggest other keywords simi-
lar to those already being monitored by the user account.

In some implementations, the system may provide a list of
keywords already used by other user accounts in order of
popularity. Alternately, or additionally, the system may iden-
tify relationships between keywords. For example, the system
may indicate that users following one keyword also tend to
follow, or not follow, certain other keywords. As another
example, the system may identify groups of related key-
words.

At 3808, a keyword is identified for monitoring. In some
implementations, a keyword may be related to any topic
relevant to the user’s interests For instance, a keyword may
include such as the name of a technology, a place, a software
program, or a job task.

In some implementations, the keyword may be identified
based on user input. For example, a user may transmit a
keyword from a client machine to the server. As another
example, a user may select a keyword from a list of available
or suggested keywords displayed in a user interface compo-
nent.

In some implementations, the keyword may be identified
by the server. For instance, the server may automatically
select akeyword generated as a suggestion at operation 3806.

In some implementations, more than one keyword may be
provided. For example, keywords may be grouped together
by logical operators such as AND, OR, and XOR. As another
example, a single keyword may be a phrase that includes
several words, such as “Java Runtime Environment”.

In some implementations, more than one keyword may be
identified. For example, a keyword rule may identify infor-
mation updates that include two or more of a list of designated
keywords. As another example, a keyword rule may identify

US 9,411,855 B2

71

information updates that include the word “Apex” and the
word “language” but not the phrase “Version 1.0.”

In some implementations, one or more exclusions may be
identified along with the keyword. For instance, a data record
or group of user accounts having the keyword in the name
may be excluded from matching the keyword, or may be
identified only once. In this way, the user may avoid receiving
irrelevant, excessive, or extraneous information updates in
the information feed associated with the keyword user
account.

At 3810, a determination is made as to whether monitoring
for the identified keyword is permitted. In some implemen-
tations, monitoring for some keywords may be disabled by
the system or by auser such as an administrator. For example,
monitoring for very common words such as articles and
prepositions may be disallowed. Following these words may
generate a large amount of work for the system due to a
relatively large number of occurrences. Also, information
updates containing such common words may be unlikely to
be particularly relevant to a user’s interests. As another
example, monitoring for expletives or other words deemed
undesirable in a social feed system may be disallowed. As yet
another example, users may be limited to monitoring for
certain designated keywords rather than being able to indicate
any word for monitoring. Such a constraint may facilitate
improved computing resource management within the infor-
mation feed system.

In some implementations, users may not be permitted to
monitor keywords that return too many results. For example,
a user may not be permitted to monitor a keyword such as
“Java”. If the user attempts to monitor such a keyword, the
user may be presented with suggestions for more specific
keywords. For example, a user requesting to monitor the
keyword “Java” may be presented with a suggestion to moni-
tor keywords such as “Java runtime environment” or “Java
AND object oriented”.

At 3812, a data object is identified. The data object may be
followed when the identified keyword is detected. In some
implementations, the data object may be any data object
associated with an information update in which a designated
keyword is detected. For example, the data object may be a
user account that generated the information update. As
another example, the data object may be a database record
with which the information update is associated. As yet
another example, the data object may be a group of user
accounts to which the information update is posted.

In some implementations, the data object may in some
instances be defined in relation to the information update.
Alternately, or additionally, the data object may be defined
when the keyword monitoring rule is created.

In some implementations, the identification of the data
object may include an indication of the scope of information
to include in the keyword user account’s information feed
based on the keyword rule. For example, when the designated
keyword is detected, the system may cause the keyword user
account to automatically follow the user account that created
the information update in which the keyword was detected
and receive all information updates created by that user
account. As another example, the system may cause the key-
word user account to follow the user account that created the
information update by to receive only information updates
created by that user account related to the designated key-
word. As yet another example, the system may cause the
keyword user account to follow a group of user accounts to
which the information update containing the designated key-
word was posted. As yet another example, the system may
cause the keyword user account to receive only the informa-

10

20

25

30

35

40

45

50

55

60

65

72

tion update containing the keyword and other information
updates in the same conversation, but not to actually follow a
data record based on the keyword rule. As yet another
example, the system may cause the keyword user account to
receive only the information update containing the keyword,
and the user may be given the choice as to whether to actively
follow a data record. For instance, the information update
may be presented in a user interface component with “follow™
buttons that allow the user to choose to follow a data record.

At 3814, auto-follow termination information is identified
for the identified keyword. In some implementations, the
auto-follow termination information may be used to cause the
keyword user account to stop following a data object that the
keyword user account was made to follow based on akeyword
rule. The auto-follow termination information may include
any information specifying an event or condition that causes
the keyword user account to stop following such a data object.

In some implementations, the auto-follow termination
information may identify a time period. The types of time
periods that may be identified may include, but are not limited
to: a time period after the most recent occurrence of a key-
word in an information update associated with the data object,
a time period after the keyword user account was caused to
follow the data object, a time period after the creation of the
information update that caused the user account to follow the
data object, and at time period after the most recent reply to
the information update that caused the user account to follow
the data object.

In some implementations, the auto-follow termination
information may identify an event. When the identified event
is detected, the following of the data object by the keyword
user account as specified by the keyword rule may be termi-
nated. The types of events that may be identified may include,
but are not limited to: reaching a designated threshold of data
objects followed by the keyword user account, reaching a
designated threshold of automatically followed data objects
followed by the user account, and reaching a designated
threshold of automatically followed data objects followed by
the user account based on the keyword monitoring rule.

At 3816, a determination is made as to whether to add
additional keyword rules for monitoring. In some implemen-
tations, the determination may be based at least in part based
on user input. For instance, a user interface component may
present the opportunity for user input indicating whether to
add additional keyword rules.

In some implementations, the determination may be made
at least in part automatically. For instance, the system may
determine whether any additional keyword suggestions may
be generated for the keyword user account.

At 3818, the keyword monitoring configuration informa-
tion is stored. In some implementations, the keyword moni-
toring configuration information may be stored on a storage
device or storage medium accessible to the information feed
system. For instance, the keyword monitoring configuration
information may be stored in a database in association with
information identifying the keyword user account, such as a
database key.

In some implementations, not all of the operations shown
in FIG. 38 need be performed. For instance, some implemen-
tations may not employ some types of configuration informa-
tion. Also, some configuration information may not be con-
figured for some user accounts or some keywords if such
configuration information is unnecessary or undesired.

FIG. 41 shows an image of a user interface component,
generated according to one or more implementations. The
user interface shown in FIG. 41 includes a keyword display
area 4102 and a keyword configuration button 4104. The

US 9,411,855 B2

73

keyword display area 4102 and the keyword configuration
button 4104 may be used to provide the user with an overview
of the user’s current keyword configuration. The keyword
configuration may be provided as described with respect to
FIG. 3/.

In some implementations, the keyword display area 4102
may be displayed in a user’s profile area or another user
interface component presented in an information feed system.
The keyword display area 4102 may display the keywords
that are currently configured for the user account. In some
implementations, the keywords displayed within the keyword
display area 4102 may resize dynamically based on various
factors such as the prevalence of the keyword as compared to
other keywords, a designated importance ranking indicated
by the user, a frequency of occurrence within the information
feed system, or other such information. The user may edit the
configuration of the keywords, add new keywords, or perform
other keyword-related functions by activating the keyword
configuration button 4104.

In some implementations, keywords may be ordered in
various ways. For example, keywords may be ordered alpha-
betically. As another example, keywords may be ordered
based on prevalence in the information feed system. As yet
another example, keywords may be ordered based on user
input. For instance, a user may separate keywords into cat-
egories, provide importance rankings for keywords, or drag
and drop keywords into a desired ordering.

FIG. 39 shows a flowchart of a method 3900 for monitoring
for a keyword, performed according to some implementa-
tions. In some implementations, the method 3900 may be
performed in order to determine whether the keyword user
account should follow any data records based on a keyword
rule. The keyword rule may be configured as discussed with
respect to the method 3800 shown in FIG. 38.

In some implementations, the method 3900 may be run
on-demand. For example, the user may request to run the
method 3900 via a user interface component provided in a
web browser.

In some implementations, the method 3900 may be run
automatically. For instance, the method 3900 may be run
when keyword monitoring is first configured for the keyword
user account or when keyword configuration information is
changed for the keyword user account.

In some implementations, the method 3900 may be run
periodically or at scheduled times. For instance, the method
3900 may be run once per day, once per week, several times
per day, or at scheduled times.

In some implementations, such as when keyword monitor-
ing uses a large amount of system resources, the method 3900
may be divided into batch jobs to spread the computing load
over a period of time. The different batch jobs may include
different sets of configured keyword rules or may be run for
different sets of information updates.

At 3902, keyword monitoring configuration information
for the keyword user account is retrieved. In some implemen-
tations, the keyword monitoring configuration information
may include the information stored at operation 3818 dis-
cussed with respect to FIG. 38. The information may be
retrieved from a storage medium accessible to the informa-
tion feed system.

In some implementations, the keyword monitoring con-
figuration information may include one or more keyword
rule. Each keyword rule may include various types of infor-
mation, which may include, but is not limited to: one or more
designated keywords to monitor, scope information identify-
ing a scope of information updates to monitor for the desig-
nated keywords, an indication of a logical combination of the

10

15

20

25

30

35

40

45

50

55

60

65

74

designated keywords, one or more data objects to follow
when the designated keywords are detected, and auto-follow
termination information for the designated keywords.

At 3904, an information update is selected from within a
designated scope. In some implementations, the selection of
the information update at 3904 may be substantially similar to
the selection of the information update discussed with respect
to operation 1706 shown in FIG. 17.

In some implementations, the scope may define a type of
information to which the keyword rule applies. For example,
the scope may include or exclude information such as infor-
mation updates, the names of files, the content of files, and the
content of data records. As another example, the scope may
include or exclude information updates published in relation
to designated types of data records, designated user accounts
or groups of user accounts, designated user account roles, or
any other categorizations within an information feed system
or computing services system.

In some implementations, the scope may define a range of
information to which the keyword rule applies. For instance,
the scope may include any information updates created in a
set number of days (e.g., ten days) before the keyword rule
was configured.

At3906, a determination is made as to whether the selected
information update includes a designated keyword. In some
implementations, a keyword rule may include one or more
keywords, which each may include one or more words as a
phrase. Keywords may be combined using logical operators
suchas AND, OR, and XOR. The determination made at 3906
may involve performing one or more string comparison
operations on data values, such as a text portion, associated
with the selected information update. Further, the determina-
tion made at 3906 may involve performing computer pro-
gramming language instructions related to evaluating a logi-
cal combination of keywords. The determination made at
3906 may also involve performing any other related instruc-
tions.

In some implementations, the selected information update
may be monitored for text strings related to the keyword. For
example, a common misspelling of a designated keyword
may be treated as a match. As another example, synonyms of
a designated keyword may be treated as a match. As yet
another example, words commonly associated with a desig-
nated keyword may be treated as a match.

At 3908, a data record associated with the selected infor-
mation update is identified. In some implementations, the
data record may be identified in accordance with the infor-
mation specified at operation 3812 discussed with respect to
FIG. 38. In some cases, more than one data record may be
identified.

In some implementations, as discussed with respect to
operation 3812, the data object may be fixed. Alternately, the
data record may be dynamically determined. For instance, the
data record may be defined in relation to the information
update. The types of data objects that may be identified may
include, but are not limited to: a user account that created the
information update, a database record with which the infor-
mation update is linked, a group of user accounts to which the
information update is posted, a file that includes the keyword
within the file contents or file name, and a database record that
includes the keyword within its fields.

In some implementations, as discussed with respect to
operation 3808, matching of the keyword may be subject to
one or more exclusions. For instance, a data record or group
of user accounts having the keyword in the name may be
excluded from matching the keyword, or may be identified

US 9,411,855 B2

75

only once. Data objects within such exclusions may not be
identified at operation 3908 for following by the keyword
user account.

At3910, the user account is caused to follow the identified
data record. In some implementations, causing the user
account to follow the identified data record may include set-
ting a data value to an indication that the first user account is
following the data object such that updates related to the data
object are capable of being stored as feed items in a feed table.
In some cases, if more than one data record is identified at
operation 3908, then more than one data record may be fol-
lowed at operation 3910.

In some implementations, the following of the data record
at 3910 may be substantially similar to the following of data
records elsewhere within the information feed system. For
instance, the keyword user account may be made to receive all
information updates created in association with the followed
data record, subject to any restrictions such as privacy con-
trols or volume restrictions.

In some implementations, the following of the data record
at 3910 may be in at least some ways different than the
following of data records elsewhere within the information
feed system. For example, information updates presented in
the information feed associated with the keyword user
account based on keyword rules may be presented in a differ-
ent color or otherwise set off from other information updates
to emphasize the fact that the keyword-based information
updates result from keyword rules. As another example, the
following of the data record at 3910 may result in only a
limited number of information updates being displayed in the
information feed associated with the keyword user account.
For instance, the information updates displayed in the infor-
mation feed may be limited to only the information update in
which the keyword was detected, or to only a conversation
that includes the information update in which the keyword
was detected and other directly related information updates.
As yet another example, the following of the data record at
3910 may result in information appearing in the information
feed associated with the keyword user account such that the
user associated with that account has the option to perma-
nently follow data records associated with the information
update. For instance, the information update that includes the
keyword may be presented, and the user may be presented
with the option to follow the user account that generated the
information update or the data object to which the informa-
tion update was posted.

At 3912, a determination is made as to whether to select
additional information updates for keyword monitoring. In
some implementations, as discussed with respect to operation
3904, information updates may be monitored for keywords
when the information updates are created. Alternately, or
additionally, groups of information updates may be moni-
tored periodically or at scheduled times. For example,
recently created information updates may be monitored once
per day, once per week, several times per day, or according to
some other schedule.

FIG. 42 shows an image of a user interface component,
generated according to one or more implementations. The
user interface component shown in FIG. 42 includes the key-
words user interface component 4202. The keywords user
interface component includes the keyword name area 4204,
the keywords age area 4206, and the keywords days area
4208.

In some implementations, the keywords user interface
component 4202 may be displayed on a page such as an
information feed associated with the keyword user account.
The keywords user interface component 4202 may display

5

10

20

25

30

40

45

50

55

60

65

76

keyword rules configured for the keyword user account. In
FIG. 42, the user account has configured only one rule for the
keyword “UCSF” because the user, Mark Benioff, is inter-
ested in the subject UCSF.

In some implementations, the keyword name area 4204
lists the keywords that have been designated, which in FIG.
42 includes only the keyword UCSF. The keyword age area
4204 identifies the number of days in the past to search for
information updates that include the keyword indicated in the
keyword name area 4204. The keyword age area 4206 iden-
tifies the number of days that objects automatically followed
by the keyword user account as a result of the keyword rule
are to be followed. The user interface component shown in
FIG. 42 is only an example of the types of user interface
components that may be generated in accordance with tech-
niques described herein. For example, the user interface com-
ponent may not display information shown in FIG. 42 or may
display additional information. As another example, time
periods may be measured in intervals other than days, such as
hours or weeks.

In some implementations, information presented in an
information feed based on keyword rules may be displayed in
a manner distinct from other information. For example,
updates from automatically followed data objects may be
flagged to indicate that the following of these objects is tem-
porary and/or is the result of a keyword rule. As another
example, updates from automatically followed data objects
may be grouped together in a digest to avoid flooding an
information feed with possibly irrelevant information. As yet
another example, updates from automatically followed data
objects may be ordered based on an ordering assigned to the
keywords or keyword rules. As still another example, updates
from automatically followed data objects may be selected
based on an importance ranking or prevalence of the key-
words.

FIG. 40 shows a flowchart of a method 4000 for terminat-
ing keyword-based following, performed according to some
implementations. In some implementations, the method 4000
may be used to cause the keyword user account to stop fol-
lowing a data record when a designated termination event has
occurred. For instance, a keyword rule may be configured to
cause the keyword user account to stop following a data
record 10 days after the data record was automatically fol-
lowed based on the keyword rule.

At 4002, a request is received to monitor keyword-based
following for termination. In some implementations, the
request received at 4002 may be generated automatically by
the system. For instance, the system may be configured to
check automatically followed data records for a user account
to determine whether a termination event has occurred for any
of'the data records. The system may be configured to perform
such a check at scheduled times, periodically (e.g., once per
day), or when a possible termination event is detected.

In some implementations, the request received at 4002 may
be generated by a user. For example, a user may notice that he
or she is automatically following a large number of data
records an request the system to determine whether to stop
following any of the data records. As another example, the
method 4000 may be run when the keyword configuration
information is altered for the keyword user account. As yet
another example, a system administrator may request that the
method 4000 be initiated.

At 4004, a data record is selected. The data record may be
followed by a user account based on a keyword. In some
implementations, the data record may be selected by sequen-
tially analyzing every data record being automatically fol-
lowed by the keyword user account. Alternately, the data

US 9,411,855 B2

77

record may be selected by choosing a data record likely to
qualify for auto-follow termination.

In some implementations, the method 4000 may be peri-
odically run so as to monitor all data records monitored by a
user account. Alternately, or additionally, the method 4000
may be run for selected data records or designated keyword
rules. For instance, the method 4000 may be run in order to
monitor a particular keyword rule when an event is detected
that may cause the termination of data objects automatically
followed based on that keyword rule.

At 4006, auto-follow termination information is identified
for the keyword. In some implementations, the auto-follow
termination information may be selected based on the data
record selected at operation 4004. For example, if the data
record selected at operation 4004 was automatically followed
due to a particular keyword rule, then the auto-follow termi-
nation information for that keyword rule may be retrieved.

In some implementations, the auto-follow termination
information may include the information identified at opera-
tion 3814 shown in FIG. 38. Alternately, or additionally, the
auto-follow termination information may include termination
events enforced by the system. Such system-provided termi-
nation information may be used to conserve system
resources, enforce limits on the number of data objects fol-
lowed, or perform various other tasks.

At 4008, a decision is made as to whether to terminate the
following of the data record. In some implementations, the
decision may be made at least in part based on the auto-follow
termination information identified at 4006. For instance, the
auto-follow termination information may indicate that the
keyword user account should stop following another user
account if the other user account has not mentioned the des-
ignated keyword within the past ten days. In this case, the
system may review the information updates posted by the
other user account for the past ten days to determine whether
any of the information updates includes the designated key-
word.

At 4010, the user account is caused to stop following the
selected data record. In some implementations, the user
account may be made to stop following the designated data
record by setting a data value to an indication that the first user
account is not following the data object. For instance, the
system may remove an indication of the data object from a
feeds data table in a database that indicates the data objects
followed by various user accounts.

In some implementations, when the user account is caused
to stop following the data record, a change may be made to a
user interface component displaying information related to
the information feed system. For instance, a list of data
records automatically followed by the keyword user account
may be altered to remove a reference to the data record that is
no longer followed.

At 4012, a determination is made as to whether to monitor
additional data records. As discussed with respect to opera-
tion 4004, in some implementations the method 4000 may be
periodically run for all data records monitored by a user
account. Alternately, or additionally, the method 4000 may be
run on demand or may be run upon detecting a designated
event.

The specific details of the specific aspects of implementa-
tions of the present invention may be combined in any suit-
able manner without departing from the spirit and scope of
implementations of the invention. However, other implemen-
tations of the invention may be directed to specific implemen-
tations relating to each individual aspect, or specific combi-
nations of these individual aspects.

10

35

40

45

50

55

65

78

While examples of the present invention are often
described herein with reference to an implementation in
which an on-demand enterprise services environment is
implemented in a system having an application server pro-
viding a front end for an on-demand database service capable
of supporting multiple tenants, the present invention is not
limited to multi-tenant databases or to deployment on appli-
cation servers. Implementations may be practiced using other
database architectures, i.e., ORACLE®, DB2® by IBM and
the like without departing from the scope of the implementa-
tions claimed.

It should be understood that implementations of the present
invention as described above can be implemented in the form
of control logic using hardware and/or using computer soft-
ware in a modular or integrated manner. Other ways and/or
methods to implement the present invention are possible
using hardware and a combination of hardware and software.

Any of the software components or functions described in
this application may be implemented as software code to be
executed by a processor using any suitable computer lan-
guage such as, for example, Java, C++ or Perl using, for
example, conventional or object-oriented techniques. The
software code may be stored as a series of instructions or
commands on a computer readable medium for storage and/
or transmission, suitable media include random access
memory (RAM), a read only memory (ROM), a magnetic
medium such as a hard-drive or a floppy disk, or an optical
medium such as a compact disk (CD) or DVD (digital versa-
tile disk), flash memory, and the like. The computer readable
medium may be any combination of such storage or trans-
mission devices. Computer readable media encoded with the
software/program code may be packaged with a compatible
device or provided separately from other devices (e.g., via
Internet download). Any such computer readable medium
may reside on or within a single computer program product
(e.g. ahard drive or an entire computer system), and may be
present on or within different computer program products
within a system or network. A computer system may include
a monitor, printer, or other suitable display for providing any
of the results mentioned herein to a user.

While various implementations have been described
herein, it should be understood that they have been presented
by way of example only, and not limitation. Thus, the breadth
and scope of the present application should not be limited by
any of the implementations described herein, but should be
defined only in accordance with the following and later-sub-
mitted claims and their equivalents.

What is claimed is:
1. A method comprising:
receiving a feed item, the feed item being displayable in a
feed of a social networking system implemented using a
database system, the feed being displayable on a display
device;
processing textual content of the feed item to detect a
designated keyword in the textual content, the desig-
nated keyword associated with a data record creation
rule;
responsive to detecting the designated keyword in the tex-
tual content of the feed item, automatically:
causing a data record to be created as a data object in a
database of the database system, the created data
record being accessible via a cloud-based computing
services environment;
identifying information of the feed item or of one or
more feed items associated with the feed item related
to the created data record;

US 9,411,855 B2

79

determining that the created data record is related to a
first customer relationship management (CRM)
record of a CRM system; and

causing one or more data fields of the created data record
to be populated with the identified information of the
feed item and information of the first CRM record.

2. The method recited in claim 1, wherein the received
message feed item is displayable in the feed in accordance
with first computer programming language instructions pro-
vided by a first entity, and wherein the created data record is
created in accordance with second computer programming
language instructions provided by a second entity.

3. The method recited in claim 2, wherein detecting the
designated keyword in the textual content comprises:

executing third computer programming language instruc-

tions provided by the second entity.

4. The method recited in claim 2, wherein the first entity is
an information service provider providing information ser-
vices to a plurality of recipients.

5. The method recited in claim 4, wherein the second entity
is one of the plurality of recipients.

6. The method recited in claim 1, wherein the created data
record is stored in a multitenant database accessible to a
plurality of tenants via a network.

7. The method recited in claim 1, wherein causing the
created data record to be created comprises:

determining a data type for the created data record, the

created data record being created in accordance with the

determined data type.

8. The method recited in claim 1, the method further com-
prising:

associating the created data record with a user account in

the social networking system, the created data record

being created in association with the user account.

9. The method recited in claim 1, wherein causing the
created data record to be created comprises:

associating the received feed item with the created data

record, the received feed item being accessible via the

created data record.

10. A database system implemented using a server system,
the database system configurable to cause:

processing a feed item, the feed item being displayable in a

feed of a social networking system implemented using

the database system, the feed being displayable on a

display device;

processing textual content of the feed item to detect a

designated keyword in the textual content, the desig-

nated keyword associated with a data record creation
rule;

responsive to detecting the designated keyword in the tex-

tual content of the feed item, automatically:

creating a data record to be stored as a data object in a
database of the database system, the created data
record being accessible via a cloud-based computing
services environment;

identifying information of the feed item or of one or
more feed items associated with the feed item related
to the created data record;

determining that the created data record is related to a
first customer relationship management (CRM)
record of a CRM system; and

populating one or more data fields of the created data
record with the identified information of the feed item
and information of the first CRM record.

11. The database system recited in claim 10, wherein the
received feed item is displayable in the feed in accordance
with first computer programming language instructions pro-

10

15

20

25

30

35

40

45

50

55

60

65

80

vided by a first entity, and wherein the created data record is
created in accordance with second computer programming
language instructions provided by a second entity.

12. The database system recited in claim 11, wherein
detecting the designated keyword in the textual content com-
prises:

executing third computer programming language instruc-

tions provided by the second entity.

13. The database system recited in claim 11, wherein the
first entity is an information service provider providing infor-
mation services to a plurality of recipients.

14. The database system recited in claim 13, wherein the
second entity is one of the plurality of recipients.

15. The database system recited in claim 10, wherein caus-
ing the created data record to be created comprises:

determining a data type for the created data record, the

created data record being created in accordance with the
determined data type.

16. A computer program product comprising computer-
readable program code executable by one or more processors
when retrieved from a non-transitory computer-readable
medium, the program code comprising instructions config-
urable to cause:

processing a feed item, the feed item being displayable in a

feed of a social networking system implemented using a
database system, the feed being displayable on a display
device;

processing textual content of the feed item to detect a

designated keyword in the textual content, the desig-
nated keyword associated with a data record creation
rule;

responsive to detecting the designated keyword in the tex-

tual content of the feed item, automatically:

creating a data record to be stored as a data object in a
database of the database system, the created data
record being accessible via a cloud-based computing
services environment;

identifying information of the feed item or of one or
more feed items associated with the feed item related
to the created data record;

determining that the created data record is related to a
first customer relationship management (CRM)
record of a CRM system; and

populating one or more data fields of the created data
record with the identified information of the feed item
and information of the first CRM record.

17. The computer program product recited in claim 16,
wherein the received feed item is displayable in the feed in
accordance with first computer programming language
instructions provided by a first entity, and wherein the created
data record is created in accordance with second computer
programming language instructions provided by a second
entity.

18. The computer program product recited in claim 17,
wherein detecting the designated keyword in the textual con-
tent comprises:

executing third computer programming language instruc-

tions provided by the second entity.

19. The computer program product recited in claim 17,
wherein the first entity is an information service provider
providing information services to a plurality of recipients.

20. The computer program product recited in claim 19,
wherein the second entity is one of the plurality of recipients.

#* #* #* #* #*

